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Abstract

Truncated back-propagation through time(TBPTT) is one
of the most common methods for training artificial recur-
rent neural networks(RNNs) for temporal credit assign-
ment(TCA). There have been various proposed theories
on how neural circuits in the brain might approximate
back-propagation algorithm in solving credit assignment
problem for feed forward neural networks, but it remains
unclear how the equivalent of TBPTT could be imple-
mented in brains. Temporal difference learning with el-
igibility traces is a key universal approach used in rein-
forcement learning for multi-step value prediction prob-
lems(TCA). In this work, we apply TD learning with eligi-
bility trace to train RNNs which is biologically plausible as
it encodes errors locally,does not need a separate back-
ward computation and hence does not have an issue of
weight symmetry.
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Background

Predictive Coding (Rao & Ballard, 1999),(Friston & Kiebel,
2009) or brain as prediction machine is one of the dominant
models of cognitive neuroscience, where all the neuronal dy-
namics and connectivity is optimized to minimize prediction
error. Within this framework brain constructs internal models
of the world and it performs constant inference to predict what
happens next, this is one of core signal or global objective w.r.t
which synaptic weight modifications are performed in brain.
These internal models are essentially dynamical systems al-
lows brains to perform multi-step predictions instead of just
single step predictions, RNNs are one of the simplest models
of dynamical systems in connectionist models with feedback
loops and are potentially more close to biological neuronal
systems. Hence in this work, we use RNNs to learn inter-
nal world models which would also enable deliberate planning
and model-based reinforcement learning(RL).

Credit assignment in brain: The back-propagation of error
algorithm (BP) is a fundamental credit assignment mechanism
in artificial neural networks but it is impossible to implement in
a real brain, but there are many BP inspired proposed theo-
ries (Lee, Zhang, Fischer, & Bengio, 2015),re-circulation, and
related methods such as contrastive divergence, etc. for un-
derstanding how brain might approximate BP including a scal-
ability evaluation of such approaches (Bartunov et al., 2018).

(Whittington & Bogacz, 2019) summarizes many of the
recently proposed theories on how neural circuits in the
brain might approximate BP, and they focus mainly on tem-
poral error(difference) models such as equilibrium propaga-
tion (Scellier & Bengio, 2017) which encode error (locally)
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in the difference between activity phases and these account
for spike-time-dependent plasticity (STDP). Another class of
models are explicit error models which include predictive cod-
ing and dendritic error (Richards & Lillicrap, 2019) models
which are inspired by properties of pyramidal neurons. But
most of these approaches focus on energy-based models
which compute gradients numerically unlike back propagation
which computes analytical gradients.

Except equilibrium propagation there has not been much
work which focused on biologically plausible TBPTT and it
is unclear how brain might implement it.(Lillicrap & Santoro,
2019) points out that compared to BP there is even less con-
viction about whether and how BPTT can be implemented
in brain, but they focus on broader TCA problem where they
suggest use of attention and memory-based architectures for
TCA.

Though we believe memory is a necessary component of
the overall system (as suggested by (Kumaran, Hassabis, &
McClelland, 2016)) we believe that much of prefrontal cor-
tex(PFC) is a hierarchical recurrent neural network with at-
tention effectively making it a complex dynamical system and
hence credit assignment, TCA of this network is needed.

Dopamine for sensory prediction errors: Dopamine neu-
rons have been thought to report reward prediction error(RPE)
and this hypothesis has several lines of evidence, but there
seems to be evidence that dopamine neurons respond to
novel stimuli too.(Gardner, Schoenbaum, & Gershman, 2018)
proposes to extend dopaminergic modulation for sensory pre-
diction errors(SPE), and it has been pointed out that it is un-
clear what exactly dopamine is contributing to model-based
learning because prediction errors do not require TD errors.
They apply TD learning to successor representation in RL,
which has more information than model-free RL but cannot
support deliberate planning which is possible in the model-
based framework.

In this work, we learn internal predictive models of the world
in recurrent neural networks and apply TD learning with eligi-
bility traces for TCA, and hence it supports a hypothesis that
dopamine neurons may contribute to SPEs and model-based
RL,and it is also consistent with three factor learning rule.

Temporal difference learning:

(Sutton & Barto, 2018),(Sutton, 1988)Temporal error models
encodes errors in differences in neural activity across time
and that is exactly how temporal difference(TD) methods work
too, the conventional (explicit-error) prediction learning meth-
ods assign credit by means of difference between predicted
and actual observations instead TD methods assign credit
by means of difference between temporally successive pre-
dictions and hence allow incremental learning and also local
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learning. In multi-step prediction problems, partial information
relevant to correctness of prediction is revealed at each step
and TD uses this information. The key idea of TD(0) is to
represent multi-step prediction error as the sum of changes in
predictions as illustrated in fig(1).
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Figure 1: Multi-step erros as sum of TD errors

Multi-step prediction setup

Let us consider a multi-step prediction problem in which
experience comes in observation sequences of form

Sf’: :10) 7S,(i jo),S,(i :30),St(i jw,Sfi ?0) where each observation at

time 't in the sequence is S,(j:()).
For any fixed 'k'(k > n), for each observation the RNN

model has corresponding predictions of future states
SUZM SU 37 where 'K s the future time-step at which

we are predicting observation and ’j’ is the number of predic-
tion dependent transitions(see below),for true observations
'j =0, ’n" is the number of steps involved in temporal error
calculation (eligibility trace).

so any observation trajectory is represented by
ng)l,S,(g)z..SQT and corresponding predictions for any
time-step by §t(1),§,(2),§,<3),...,§,<"),where St<0) represents

the true observation from the world.
And let T be the total number of time steps in a trajectory.

RNN as internal model of environment We consider a
setup similar to (Chiappa, Racaniére, Wierstra, & Mohamed,
2017),etc. where an RNN is used to learn environment model
and hence it allows us to have not just single-step predictions
but multi-step predictions. It is important to point out there
are two kinds of transitions which can happen in RNNs one
is an open loop transition and other is closed loop, i.e. at
any given time step depending on whether RNN has access
to true observation or if it uses its own prediction as input for
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transition/rollout in multi-step prediction setting RNN performs
prediction dependent transitions. These two kinds of transi-
tions are illustrated in fig(2), fig(3).

Let h; be the hidden state of the recurrent network, at any
given time-step it takes previous hidden state, current obser-
vation and predicts the next observation.

Two kinds of transitions in RNN Let f(.) be the RNN,then
Observation dependent transitions are
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Prediction dependent transition are

olj=n)
Stikn

0 1 0
S% S'te1 | STt
A -
» L

Observation dependent transition

ik = f(eahmkfhéﬁ,(ﬁﬁl))

1

’ Sl ‘ | Sz |

s%

Prediction dependent transition

Figure 2: Different kinds of transitions

Objective Function:

Multi-step prediction or TD(1) Loss: It is slightly differ-
ent to traditional monte carlo or TD(1) update we apply in
RL where we only have access to target at the end of each
episode, here similar to (Venkatraman, Hebert, & Bagnell,
2015),(Bengio, Vinyals, Jaitly, & Shazeer, 2015) we have ac-
cess to target for each of multi-step prediction.

G 0 6 0)
loss=Y Y [IS =8|
=1 j=1

(3)

This can be considered as a case where A = 1 in TD(A) set-
ting.

Temporal Difference or TD(0) Loss: Temporal error mod-
els or TD(0) setup is exactly similar to traditional setup in RL,

but instead of value prediction here we predict the next or fu-
ture observations given current observation

T

loss = Z

=1j=

n

A

S,(j) I

18V~ (4)
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This can be considered as a case where A = 0 in TD(A) set-
ting.

The red arrow in fig(3) represents a TD error where a 3-step
rollout is acting as a TD target to 4-step rollout, and the differ-
ence between /s, k' is temporal difference(TD) or temporal
error for each hidden state(neuron) in RNN, hence is a local
learning rule.



Training objective: Combining TD(0) and TD(1) For sim-
plicity we will consider a special case of combining returns(TD
targets) in TD(A) setting where we are averaging for A € (0, 1)
but we would not be considering other values of 'n’ in n-step
TD(A) setting, this can also be interpreted as one-step TD reg-
ularization added to traditional multi-step objective.yis the dis-
count factor for recency. Please note that the value of 'n’ is the
length of eligibility trace which enables us to solve TCA.
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Experiments

We consider a simple task where a single layer RNN with 300
nodes is trained to learn dynamics of a simple pendulum(2
dimensional), the input to the RNN is position and velocity
of the pendulum and each trajectory/episode length is 1500
time-steps. In all our experiments during training and evalua-
tion, we have a warm-start period of 50 time-steps where the
RNN has access to true observations at each time-step and
learning is not applied.

An important point to note is that we are using back-
propagation to train the RNN from input to output per time
step i.e. though we do not perform BPTT and use TD learning
as a framework to solve TCA we still use BP to update pa-
rameters of the RNN w.r.t overall objective,we allow gradient
to back-propagate only one time-step by detaching all previ-
ous variables in pytorch framework(as illustrated by red line in
fig(3)). Blue, green arrows in fig(3) are explicit(supervised) er-
rors for each hidden node (in our experiments we directly get
the back-propagated gradient from the output layer to account
for explicit errors). We use A = 0.5 for all experiments

Evaluations reported in Table(1) We evaluate the RNN on
two different multi-step prediction settings.

The first one is traditional multi-step setting, where RNN would
have access to information of all the observations until the
current state and then we evaluate for different step-lengths
how accurate are predictions, step-length varies from tradi-
tional one-step prediction to 50 step prediction and these are
reported by ’length of prediction’ in the below table(1).

The second set of evaluations is on increasing complexity of
state estimation problem i.e. RNN has access to true obser-
vation at some frequency i.e. if input sampling frequency’ = 1
then it is traditional one-step prediction but if sampling fre-
quency is ’5’ then RNN looks at true observation only once in
5 steps and hence would have 1 —step,2 —step,3 —step,4 —
step,5 — step predictions. This set of evaluations can be con-
sidered as the geometric mean of different step-lengths in
multi-step predictions. We vary the sampling frequency from
"1'to’100" , in the extreme case of 100 RNN has access to
only 15 observations in the entire 1500 time-step trajectory
after warm-start.

’k1”in table(1) of TBPTT represents number of time steps gra-
dient is back-propagated,we would like to point out that there
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isn’t lot of hyper parameter tuning done w.r.t A,y and etc.
Summary of results: Here we focus on long term predic-
tion,sampling frequency is low,and also there seems to inher-
ent tradeoff between shor-term and long-term prediction ac-
curacy.

e n-step(n=5) performs better than n=1 for both combined
loss, TD(1) and hence it shows evidence that eligibility trace
improves TCA.

e TD(0)+TD(1) performs better than TBPTT potentially be-
cause of vanishing gradient problem.

e TBPTT with scheduled sampling is the best performing
model as is also the gold standard, but for very long term
prediction or very low sampling frequency TD(0)+TD(1)
works better potentially because of self consistency and
variance reduction property of TD methods.

e The proposed approach obtains an analytical gradient in-
stead of numerical gradient which was focus of most previ-
ous work as they were based on energy based models.

Figure 3: Different roll-outs of RNN with varying input informa-
tion

Discussion and Future work

In this work, we applied TD learning for TCA for generic pre-
diction problem on one layer RNN, on a simple domain. As the
proposed approach encodes error locally, does not require a
backward pass in time, hence it can support stochastic com-
munication. We would like to extend this framework to hier-
archical RNNs and also evaluate on more complex domains
to evaluate the scalability of this method. It is also important



Table 1: Mean square error(MSE) for different objectives and training setups

TBPTT(k1=1) TD(1),n=5 TD(0)+TD(1),n=5 TBPTT(k1=5) TBPTT(k1=5)+TD(1)
Length of prediction MSE MSE MSE MSE MSE
1 7 4 8 2 1
3 26 12 22 7 2
5 58 24 34 13 4
10 225 74 55 40 9
20 1003 273 80 144 24
30 2119 624 102 317 53
50 3465 1834 136 814 188
input sampling frequency MSE MSE MSE MSE MSE
1 8 4 8 2 1
3 25 9 18 6 2
5 53 16 26 12 4
10 238 53 42 38 11
20 1122 329 65 183 41
30 1741 596 86 541 91
50 2650 1092 142 1110 272
100 3599 2559 282 1766 1218

to understand and analyze the computational and theoretical
implications of the proposed approach. An important problem
with learned computational models of the world is poor long
term prediction and we believe this could be a useful step
towards that.There is a need for energy efficient hardware
for deep learning, and neuromorphic computing with spiking
neural networks are one of the promising directions but cur-
rently we cannot implement BP on those platforms because
BP needs end-end gradient computation, so research on bi-
ologically plausible approximations of BP may enable ubiqui-
tous use of such hardware.
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