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Abstract

Any organism that senses its environment only has an
incomplete and noisy perspective on the world, which
creates a necessity for nervous systems to represent un-
certainty. While the principles of encoding uncertainty
in biological neural ensembles are still under investi-
gation, deep learning became a popular and effective
machine learning method. In these models, sampling
through dropout has been proposed as a mechanism to
encode uncertainty. Moreover, dropout has previously
been linked to variability in spiking networks under spe-
cific assumptions. We compare the relationship between
dropout and spiking neuron models by means of the varia-
tion ratio over their output. We demonstrate that in cases
of incomplete world knowledge (epistemic uncertainty)
as well as for noisy observations (aleatoric uncertainty)
both neuron models show similar uncertainty represen-
tations. These findings provide evidence that sampling
could play a fundamental role in representing uncertain-
ties in neural systems.
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Introduction

Any organism that senses its environment only has an incom-
plete and noisy perspective on the world. Accordingly, repre-
senting uncertainty for the state estimation of the world poses
a central challenge for nervous systems (von Helmholtz, 1867).
Since the initial formulation of those ideas, the encoding of
uncertainty in ensembles of neurons is still an open field of
research (Vilares & Kording, 2011).

In the field of machine learning, interconnected neurons
inspired deep learning, a recently popular and effective family
of methods (Goodfellow, Bengio, & Courville, 2016). These
methods are not only loosely inspired by nervous systems but
have also been used in turn to analyse biological neural net-
works (Glgli & van Gerven, 2015). Cichy and Kaiser (2019)
have argued that deep learning models can serve as valu-
able scientific tools for exploratory research in computational
neuroscience.
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Introduced as regularisation to prevent overfitting and sup-
port generalisation, dropout has become a state of the art ad-
dition to deep learning models (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). The idea of “dropping”
neurons with a certain probability from a learning episode
both intuitively relates to the variability found in its biological
counterparts, and has been linked analytically under specific
assumptions as well (Baldi & Sadowski, 2014). This link has
been used to improve training and model performance of arti-
ficial spiking networks (Neftci, Pedroni, Joshi, Al-Shedivat, &
Cauwenberghs, 2016). Gal and Ghahramani (2016) showed
that dropout cannot only be used to improve model training but
can be interpreted as approximate Bayesian inference. Apply-
ing dropout for unseen examples allows for obtaining estimates
of the model’s uncertainty in its predictions. Given the theoreti-
cal relationship between dropout in rate-based deep learning
networks and variable firing of neurons in biological spiking net-
works, the question emerges whether spiking in artificial neural
networks can play a similar role in representing uncertainty, to
dropout in classical deep learning architectures.

In this work, we empirically investigate the relationship be-
tween dropout and artificial spiking neurons in case of an
incomplete knowledge of the world (epistemic uncertainty) as
well as for noisy observations (aleatoric uncertainty). Since
distinguishing the two types of uncertainty by measuring prop-
erties of the model output is difficult (Smith & Gal, 2018), we
investigate the two uncertainty scenarios separately. We fo-
cus on the sampling view of uncertainty encoding in neural
ensembles (Vilares & Kording, 2011). This view holds that the
variability in neural firing rates represents uncertainty by sam-
pling from the posterior probability distribution (Buesing, Bill,
Nessler, & Maass, 2011). Based on this theoretical account we
analyse the correspondence of uncertainty representations in
spiking network models and Monte Carlo dropout in rate-based
neural networks. We classify MNIST digits with a multi layer
perceptron where the hidden layer either consists of traditional
rate-based units with dropout, or spiking leaky integrate and
fire neurons (Figure 1). We quantify the uncertainty over multi-
ple forward passes or time steps of the predictive model output
with the variation ratio (Gal & Ghahramani, 2016). Rate-based
and spiking neuron models show highly similar uncertainty
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Figure 1: A traditional, rate-based multi layer perceptron (784:512:10) is trained on MNIST with dropout at the hidden layer. The
same model is used to sample 80 Monte Carlo dropout predictions per test image. In the bottom case the hidden units are turned
into leaky integrate and fire (LIF) neurons, and the predictive output for each input is recorded over 80 time steps. Finally, the
variation ratio (Eq. 1) quantifies model predictive uncertainty from the output distributions; while either the size of the training set
or the amount of salt & pepper noise on the test set is varied to manipulate epistemic and aleatoric uncertainty respectively.

representations, quantified by the variation ratio, for epistemic
uncertainty (Figure 2) as well as for the aleatoric case (Fig-
ure 3). Showing that the variability introduced through spiking
represents uncertainty similarly to dropout, provides evidence
for the relevance of spiking for inference in biological neural
networks.

Methods

A simple multi layer perceptron was trained using Nen-
goDL (Rasmussen, 2018), which allows converting rate-based
neural networks into their spiking counterparts. The model
is trained as a rate-based network by setting the activation
functions to a continuous approximation of the leaky integrate
and fire (LIF) neuron (Hunsberger & Eliasmith, 2015). There-
fore, the model can be run as a regular rate-based network
during test time, or alternatively used as a spiking network
by replacing the continuous LIF approximation by spiking LIF
units. For the task at hand, a model with one fully-connected
hidden layer of 512 units with smooth LIF activation function
was trained. Neurons were deactivated with dropout probability
of 40%. The logit activations of the last layer were normalised
using a Softmax function to represent a probability distribu-
tion. The network was trained to minimise the cross-entropy
between the target and the network output.

To test the representations of both epistemic as well as
aleatoric uncertainty in artificial neural networks, two experi-
ments were performed that systematically varied one source of
uncertainty individually. Epistemic uncertainty was modulated
by training separate networks with a varying number of training
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examples, ranging from 2% to 0.1% (i.e. 1200 to 60 random
training images). With only a few examples, a model’s ability to
learn is impaired and it should thus exhibit high epistemic un-
certainty. With an increasing amount of data the model should
become more confident. In the second experiment, a single
model was trained on the full, noise free MNIST training dataset
(60000 images). Additionally, for each salt & pepper noise (cf.
below) level of 0.1,0.2,0.3,0.4,0.5, we added a random sub-
set of size 5000 from all training images to provide sufficiently
many noisy examples to the model during training. Training the
model on the full dataset and noisy exemplars should ensure
the absence of epistemic uncertainty. In other words, it pre-
vents the model from leaving the training data manifold when
confronted with high levels of noise (i.e. aleatoric uncertainty).
Aleatoric uncertainty was then varied by applying an increasing
amount of noise to the test data, observing changes in the
predictive output of the same underlying model. Noise was
introduced to the images by randomly setting individual pixels
to either 0 or 1 with varying probability (salt & pepper noise). In
this setting the model is expected to show increased predictive
uncertainty the more noise is applied to the test data.

Uncertainty was quantified using the variation ratio (Eq. 1)
during test time for both the rate-based as well as for the spik-
ing model using the same, initially trained model weights. The
uncertainty analysis in the rate setting is based on Monte Carlo
dropout as described by Gal and Ghahramani (2016), where
80 Monte Carlo samples were drawn from the approximate
posterior using different dropout masks. In this setting the for-
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Figure 2: Varying the amount of training examples (epistemic
uncertainty) the top plot shows classification accuracy and
the bottom plot shows the variation ratio, both on the test set.
The rate model results are presented in red, coarsely dashed
and triangular markers. Results from the spiking model are
presented in blue, fine dashed, round markers. The bottom
plot features two individual secondary axes for the variation
ratio. The error bars, representing a single standard deviation
for 5 independent test runs, are smaller than the markers.

ward passes are independent from each other, stochastically
silencing neurons and thereby altering the network activation
pattern. In the spiking model, the same input stimulus was
propagated through the network for 100 time steps. For every
consecutive time step the LIF neurons integrate their input,
are silent until their critical activation threshold is reached, and
become inactive again during their refractory period. Thereby,
despite being deterministic, spiking units introduce variability
over time steps. Since roughly 20 time steps are needed to
reach a stable firing rate distribution, we only used the last 80
time steps to evaluate the uncertainty.

The variation ratio is defined as the proportion of outcomes
that are not in the mode category. Accordingly, for S total
predictions and a mode (most frequent) prediction occurring
s times the variation ratio v is given by:

Sm
vi=1 S
With higher certainty the network is expected to predict the
same class more frequently such that the variation ratio is low
and the other way around. This measure does not distinguish,
by itself, between aleatoric and epistemic uncertainty.

(1

Results

In figure 2 results are shown for a varying amount of training
examples (epistemic uncertainty). The spiking model variant
as well as the version with dropout perform highly similar with
respect to the accuracy and variation ratio. It can be seen
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Figure 3: Varying the amount of salt & pepper noise (aleatoric
uncertainty) the top plot shows classification accuracy and
the bottom plot shows the variation ratio, both on the test set.
The rate model results are presented in red, coarsely dashed
and triangular markers. Results from the spiking model are
presented in blue, fine dashed, round markers. The bottom
plot features two individual secondary axes for the variation
ratio. The error bars, representing a single standard deviation
for 5 independent test runs, are smaller than the markers.

that for both models the accuracy decreases with decreas-
ing amounts of training data. At the same time the model
uncertainty, measured by the variation ratio, increases.

Figure 3 shows results for applying an increasing degree of
salt & pepper noise (aleatoric uncertainty). The spiking model
variant as well as the version with dropout show similar classifi-
cation test accuracy due to the same network weights being
used, displaying monotonically decreasing scores for higher
noise levels. The variation ratio is highly correlated (Spearman
rank correlation, r = 1. and p < 0.0001) for both models. The
uncertainty metric in both models increases proportional to the
applied noise. In both experiments it can be observed that
the variation ratio of the spiking network is constantly offset by
about 0.3.

Discussion

Representing epistemic uncertainty, that originates from an in-
complete view of the world, as well as aleatoric uncertainty, due
to noisy senses, is a key challenge for nervous systems. While
artificial neural networks from the field of machine learning
are partly inspired by brains, the degree of their correspon-
dence and how well they can help to understand their spiking
counterpart are open research questions. In this work we
compare Monte Carlo dropout with leaky integrate and fire
neurons as means to introduce variability and thereby allow for
the representation of uncertainty in artificial neural networks.
Our results show a strong correlation between uncertainty
quantified by the variation ratio for Monte Carlo dropout and a



network of spiking neurons, even though the variation ratios of
the spiking network are constantly offset. For both, epistemic
and aleatoric uncertainty, the models’ variation ratio increases
when trained with fewer samples and increases proportional to
the fraction of applied salt & pepper noise, respectively. This
means that in both cases the model outputs vary to similar
degrees. In cases where uncertainty calibration is relevant, the
observed offset might matter. Whereas in cases, where only
quantifying relative changes in uncertainty matters, this offset
is not important. The offset in the variation ratio for the spiking
network originates from more variability due to different inter-
activation interval distributions. The inter-activation intervals
for spiking neurons follow a Poission distribution with only few
neurons that are very active. In contrast, dropout results in
neurons either being inactive or active with a fixed probability
resulting in a bimodal distribution, with one mode at zero and
the other at one minus the dropout probability. The observed
offset is reduced by increasing the dropout probability.

The mechanisms for encoding uncertainty in the brain are
still subject to active investigation and debate. Meanwhile,
increasing experimental evidence suggests that probability
distributions could be neurally encoded by representing their
mean and variance through sampling (Orban, Berkes, Fiser,
& Lengyel, 2016), where said variance represents uncertainty.
Our results provide another puzzle piece of evidence for this
view. With this research we follow a line of studies that use
artificial neural network models as scientific tools that allow for
easier exploration than large scale human or animal studies
while still providing compelling complementary evidence (Cichy
& Kaiser, 2019; Guglu & van Gerven, 2015). Therefore, our
results do not only support the sampling view of uncertainty
encoding and guide future research about the precise underly-
ing mechanisms, we also reconfirm the value of computational
research using artificial neural networks for neuroscience.

These insights provide the basis for further investigation of
uncertainty encoding in more complex and biologically more
plausible artificial neural networks models. Especially for ques-
tions regarding the role such an uncertainty representation
might take in the context of hierarchical computation, leverag-
ing uncertainty information to guide agent environment interac-
tions. Such hierarchical models require a shift from the output
focused decoding perspective taken by using the variation ratio
of the model output, towards investigating uncertainty encoding
in latent feature spaces. One approach could be to investigate
the variability of such representations, formed in more complex
neural networks, with increasing levels of uncertainty. This
could provide insights in the mechanisms underlying previous
experimental findings (Orban et al., 2016).

To conclude, we provide evidence that stochasticity intro-
duced by dropout during forward passes displays a similar
uncertainty representation as caused by variable firing in spik-
ing LIF networks, following the sampling view of uncertainty
encoding (Vilares & Kording, 2011), quantified by the variation
ratio. Thereby, we add another building block to describing the
relationship between rate-based and spiking artificial neural
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networks, bridging between the fields of machine learning and
computational neurosience.
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