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Abstract: 

The electroencephalographic (EEG) response to a sound 
of interest is often quantified by averaging time-locked 
signals over many repetitions in order to get an event-
related potential (ERP).  While this technique can identify 
an average response, it does not easily allow one to 
validate the robustness of that response nor variation of 
the response over repetitions of the sound.  Here, we 
extend the ERP technique as a linear-nonlinear Bernoulli 
(LNB) model, inspired by neural models, in order to 
develop a framework for decoding the timing of stimulus 
events.  We use this technique to analyze EEG 
recordings during presentations of continuous speech 
and examine neural responses to phonemes, which have 
been shown to have characteristic EEG responses.  
Pattern analysis of the confusion between phonemes 
separates phonemes into vowel and constants, 
indicating separate ERPs that can robustly predict these 
phoneme classes.  We also find that vowels are decoded 
more accurately than consonants, and the time course of 
vowel predictability tracks the rhythm of vowels, while 
consonant predictability does not track the rhythm of 
consonants.  Overall, we demonstrate a specific instance 
in which a linear-nonlinear Bernoulli modeling 
framework can be used to compare ERPs and quantify 
the ability to decode stimulus events from EEG. 
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Introduction 
To understand how the brain responds to sound, a 
common technique used for electroencephalography 
(EEG) is to present a sound numerous times and 
average the evoked response over many repetitions 
(Sur & Sinha, 2009).  This technique to get an event 
related potential (ERP) presumes that the neural 
responses are consistent across each presentation of 
the sound, but the response could vary over time due to 

changes in cognitive state or due to adaptation 
(Näätänen, 1982).  Quantifying this change over time, 
however, is difficult using current ERP-based methods.  
More recently, linear modeling has been used to identify 
a neural response to multiple types of events during the 
presentation of a continuous stimulus, such as 
phonemes or words in speech (Di Liberto et al, 2015; 
Brodbeck et al, 2018).  This framework has a benefit of 
allowing researchers to evaluate the model by 
quantifying its ability to predict EEG.  Still, it becomes 
difficult to evaluate the contribution of individual 
components or identify redundant information in these 
models, and it is even similarly difficult to determine how 
these contributions might change over time.  
Additionally, regularization, which is often necessary to 
prevent overfitting, could normalize the relative 
contribution of different events in the model, making 
cross-component comparisons difficult. 
Advances in modeling spikes from single-cell neural 
recordings could resolve some of these issues in EEG 
(Schwartz et al, 2006; Meyer et al, 2017).  In one basic 
form of analysis, the input signal is averaged over spike 
times in order to get a template for the input signal that 
evokes a spike.  This template is then used to map the 
linear dot-product between the input and the template 
into a probability of spiking using a nonlinear 
transformation that depends upon the event probability 
distribution.  If the event probability is assumed to be 
Bernoulli-distributed, together this model known as a 
linear-nonlinear Bernoulli (LNB) model.    
Here, we turn the ERP into an LNB model that can be 
used to quantify the temporal encoding of events. 
Unlike spike models, the ERP is used as a template to 
quantify the probability of stimulus events based on the 
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correlation between the template and the ongoing EEG.  
We then apply this technique to construct a separate 
LNB model for each phoneme in continuous speech, 
and then use the model to reconstruct the timing of the 
trained phoneme as well as other untrained phonemes 
that may share a similar neural response.  We show that 
pattern analysis of cross-phoneme reconstruction 
accuracies allows us to identify phoneme 
characteristics that evoke unique responses in the 
brain. 

Methods 

EEG collection and preprocessing 

During EEG recording, 10 subjects listened to an 
audiobook over headphones, where the audiobook was 
split into 29 trials, each about 155 s in length (Di Liberto 
et al, 2015).  The EEG was referenced to the mastoids, 
downsampled to 128 Hz, and then filtered between 1-
15 Hz.   

Phoneme decoding 

First, the ERP was computed for each phoneme, and a 
predicted EEG signal was created by placing the 
phoneme-specific ERP at each phoneme onset. ERPs 
were calculated at delays 0-300 ms post-phoneme. 
Then, to reduce the dimensionality of the EEG data, 
canonical correlation analysis (CCA) was used to 
identify two canonical components in the recorded EEG 
that maximize the correlation between the EEG and the 
predicted signal, in order to optimize decoding 
accuracy.  Lastly, the LNB model was computed with 
ridge regression and optimized with 10-fold cross 
validation to maximize the likelihood of the observed 
timing of phonemes given the fitted model.  A logistic 
function was used to map the dot-product between the 
ERP and the ongoing EEG into a Bernoulli event 
probability, using glmfit in Matlab.   
Speech phonemes were identified identically to Di 
Liberto et al, 2015.  The onset times of the phonemes 
were used to label event times for the phoneme-specific 
ERPs.  The LNB model was created separately for each 
phoneme, and then tested on all phonemes for each left 
out trial.  The ability to reconstruct the timing of each 
phoneme was quantified using an “adjusted log-
likelihood” which was equal to the log-likelihood of the 
model’s prediction minus the log-likelihood of a model 
that only represents the average event probability of the 
phoneme.  This adjustment was necessary to make 
phoneme decoding accuracy comparable across 
phonemes with different frequencies.  
 

Figure 1: (A) Adjusted log-likelihoods of the “Predicted 
Phoneme” trained on the “Actual Phonemes” for an 
example subject.  The log-likelihoods were adjusted by 
subtracting the log-likelihood of a model that 
represents the average probability of the phoneme 
with no information about the EEG. (B) 
Multidimensional scaling (MDS) of the log-likelihood 
matrix (as in A) averaged across all subjects.  Vowels 
are labeled in blue, and consonants are labeled in red.  
MDS highlights a separation of vowels and 
consonants, indicating the confusion within each class, 
and a vowel-consonant model may more optimally 
capture the neural responses to phonemes.  
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Results 
Phoneme-specific LNB models could reconstruct onset 
times for its target phoneme as well as the onset times 
of other phonemes.  Specifically, Figure 1A shows that 
models fit for specific vowels and diphthongs are more 
predictive of other phonemes within the same 
categories than the consonants.  Multi-dimensional 
scaling of the averaged reconstruction matrix across 
subjects indicated that vowels and consonants were 
fairly well separated (F-test of phoneme class 
separation: F = 22.96, p << 0.001) (Figure 1B).  This 
suggests that a model that predicts consonants and 
vowels rather than individual phonemes may more 

optimally capture the neural responses to phonemes in 
the brain.   
We then created LNB models that predicted vowels and 
consonants separately.  Vowel and consonant 
reconstructions were significantly better than chance 
(Wilcoxon signed-rank, vowels: z = 14.00, p << 0.001; 
consonants: z = 12.50, p << 0.001).  Additionally, 
vowels were reconstructed significantly better than 
consonants (Wilcoxon signed-rank: z = 13.70, p << 
0.001).   
A closer examination of the time-varying event 
probabilities reconstructed by the two models show 
signals that fluctuate with opposite polarities: increases 

Figure 2: (A) Reconstruction of vowel (blue) and consonant (red) probabilities for one example trial in one subject.  
The actual phonemes are indicated above in blue for vowels and red for consonants.  Note that the vowel 
reconstruction appears to fluctuate at a regular frequency, suggesting an optimal frequency at which the brain is 
tracking vowels. (B) Power spectral density of the reconstructions for vowels and consonants, using the colors 
indicated in A.  The power is plotted as a function of the period of the oscillation.  Each thin line is the power 
averaged across trials for one subject.  The thick lines indicate the average across subjects. (C) Interonset interval 
histogram of vowels across all trials (dark blue), overlaid with the average power spectral density of the 
reconstruction across subjects, as in B (light blue).  Both have been normalized by their areas between 30 and 2000 
ms. The power of the reconstructions captures the peak interonset interval for the vowels. (D) Interonset interval 
histogram (dark red) and average power across subjects (light red) for consonants.  Unlike for vowels, the 
consonants reconstructions do not capture the regularity in consonant intervals.  
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in the probability of a vowel occur when the probability 
of a consonant decreases (Figure 2A).  Note that there 
were no model constraints linking consonant and vowel 
probabilities because the two models were fit 
separately. It is also apparent that the fluctuations are 
larger for vowels than consonants, which could relate to 
the improved reconstruction accuracy for vowels 
compared to consonants. 
By analyzing the spectrum of the time-varying 
probabilities, we found that the probability of vowels 
fluctuate around 6 Hz (Figure 2B).  In contrast, the 
spectrum for the consonants is much flatter, indicating 
less regularity.  Moreover, the peak of the spectrum for 
the vowel reconstructions matches the peak in the 
interonset interval distribution for vowels, while 
consonants have less overlap despite having a similar, 
albeit shorter, peak interonset interval (Figure 2C,D).   
This suggests that the primary signal being captured by 
the phoneme ERP model may also be a signal relevant 
for capturing syllables and speech rhythm (Oganian & 
Chang, 2018; Anumanchipalli et al, 2019).   

Conclusion 
With an LNB framework for representing evoked 
responses in EEG, we have shown that neural 
responses to multiple event types can be compared and 
reduced to event-related classes. Furthermore, 
analyzing the time-varying probability of phonemes 
revealed the stronger and more regular encoding of 
vowels in continuous speech than consonants.  This 
framework can be extended further in the future by 
quantifying nonlinear effects of event history on evoked 
responses, or by using non-monotonic nonlinearities, in 
order to capture more information about the time course 
of evoked responses in the EEG that would not be 
readily captured with the typical ERP approach.   
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