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Abstract
It is very common in studies of the learning capabilities
of spiking neural networks (SNNs) to use homogeneous
neural and synaptic parameters (time constants, thresh-
olds, etc.). Even in studies in which these parameters
are distributed heterogeneously, the advantages or dis-
advantages of the heterogeneity have rarely been stud-
ied in depth. By contrast, in the brain, neurons and
synapses are highly diverse, leading naturally to the hy-
pothesis that this heterogeneity may be advantageous for
learning. Starting from two state-of-the-art methods for
training spiking neural networks (Nicola & Clopath, 2017;
Shrestha & Orchard, 2018), we found that adding parame-
ter heterogeneity reduced errors when the network had
to learn more complex patterns, increased robustness
to hyperparameter mistuning, and reduced the number
of training iterations required. We propose that neural
heterogeneity may be an important principle for brains
to learn robustly in real world environments with highly
complex structure, and where task-specific hyperparame-
ter tuning may be impossible. Consequently, heterogene-
ity may also be a good candidate design principle for arti-
ficial neural networks, to reduce the need for expensive
hyperparameter tuning as well as for reducing training
time.
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Introduction
In order to understand how a complex system such as the
brain works, it can be very useful to start by studying a simpli-
fied version of it and then adding complexity step by step. The
simplifying assumption of heterogeneity of neural and synaptic
parameters makes theoretical analysis and simulation much
easier, and from a statistical point of view heterogeneity has
sometimes been thought to only add noise to the system.
However, recent works have suggested that the heterogene-
ity present in the brain may play several important functional
roles (Maass, Natschlger, & Markram, 2002; Rotman & Kly-
achko, 2013; Kilpatrick, Ermentrout, & Doiron, 2013; Lengler,
Jug, & Steger, 2013; Wu et al., 2018), notably heterogeneous
tuning may be important for robust population coding of com-
plex stimuli (Marsat & Maler, 2010; Goodman, Benichoux, &

Brette, 2013). Until recently, training spiking neural networks
(SNNs) to carry out non-trivial tasks was very challenging, but
recent methods have begun to change that (Nicola & Clopath,
2017; Shrestha & Orchard, 2018; Zenke & Ganguli, 2018).
In this paper, we test the hypothesis that neural heterogene-
ity can contribute to learning in terms of accuracy, speed and
robustness, by adding heterogeneity to two of these methods
that previously only used homogeneous neurons.

Heterogeneity improves learning at multiple
temporal scales

We first train a recurrent spiking neural network to reproduce
a supervisor signal composed of a sum of two sinusoids at dif-
ferent frequencies f1 (fixed at 20 Hz) and f2 (varied between
1-19 Hz). We use leaky integrate and fire (LIF) neurons and
double exponential synapses with decay time constant τ. The
training is performed using the FORCE learning method as
in Nicola and Clopath (2017). After training the network for 8s
we test if the network has learned the supervisor by turning off
the learning rule and the supervisor for 10s. We measure the
learning error ε measured as the logarithm of the Euclidean
norm between the supervisor signal and the network output.

We tested four different synaptic constant configurations:
Homogeneous Fast, where all time constants of all synapses
are set to 20ms, Homogeneous Slow, where all time con-
stants of all synapses are set to 100ms, Heterogeneous Dou-
ble, where we randomly allocate either a fast (20ms) or a slow
(100ms) synaptic constant to each synapse with probability
0.5 and Heterogeneous Gamma where the value of each
synaptic constant is drawn from a Gamma distribution. For
numerical efficiency, all synaptic time constants are the same
within a neuron receiving synapses, but may be different be-
tween different neurons.

We tested how these different configurations affected learn-
ing performance and we found that while the training error for
the Fast synapse configuration is the lowest the test error is
significantly worse (Figure 1). This is especially remarkable
at f2<10Hz where the supervisor signal has structure at two
very different time scales.

Two considerations may explain the poor results of using
only a single fast time constant. First, the Homogeneous Fast
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Figure 1: Training and test error averaged over 10 trials for a
1000 LIF network trained using the FORCE method to repro-
duce a sum of two sinusoids signal at frequencies f1 = 20Hz
and f2. Synapses were either all fast or all slow (Single Fast,
Single Slow), split randomly into a fast and slow group (Dou-
ble), or fully randomly distributed (Gamma).

configuration results in a network that has a shorter memory
than the rest. Secondly, during the training phase the weight
update is performed every 2.5ms. Having a shorter memory
means that the network stores more information about the last
2.5ms than the other configurations, thus allowing it to perform
a more effective weight update at every learning step. How-
ever, it cannot remember what happened at longer time scales
which means that when training stops it stays with a weight
configuration that is too localised at a particular section of the
signal to properly generalise at longer time scales.

By adding a second slower time constant (Heterogeneous
Double configuration) or several time constants distributed fol-
lowing a Gamma distribution (Heterogeneous Gamma config-
uration) we introduce the memory required to properly gen-
eralise at longer time scales as shown in the testing error for
these configurations at f2<10Hz (Figure 2).

We also note that the Gamma configuration performs
slightly worse than the Heterogeneous Double configuration.
This may be due to the fact that two time constants exactly
matches the stimulus structure, which would not be the case
for a more realistic stimulus with temporal structure at multiple
timescales. In the next section, we therefore tested perfor-
mance with this more realistic signal.
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Figure 2: An example of learning the sum of a 1Hz and 20Hz
sinusoid using two synaptic configurations: top, all synapses
fast; bottom, synapses randomly assigned to a fast or slow
group. In the case where all synapses are fast, the network
struggles to retain the longer time scale variation of the signal.

Heterogeneity improves robustness
Nicola and Clopath (2017) show that the network performance
is highly dependent on the hyperparameters G and Q chosen.
Here, we investigate how robust the network is by varying the
network size while keeping these hyperparameters constant.

We first tune G and Q for a network of 1000 LIF neurons
trained to reproduce a spectrogram of a zebra finch bird song.
This signal was chosen due to its high spatio-temporal com-
plexity (Figure 3). Then, we vary the size of the network under
the Homogeneous Fast, Heterogeneous Double and Gamma
configurations. We do not use the Homogeneous slow con-
figuration due to its poor training and testing error in the 1D
signal.

We computed the test error for networks with sizes from
500 to 8000 neurons (Figure 4). As expected, the lowest test
error was obtained with the 1000-neuron network, matching
the size for which the hyperparameters G and Q were cho-
sen. We see that beyond 3000 neurons the Homogeneous
network fails to reproduce the signal and after beyond 6000
the same happens for the Heterogeneous Double configura-
tion. The testing error of the Gamma configuration remains
almost the same for all network sizes. This reveals how a
fully heterogeneous distribution of synaptic constants can re-
markably improve the robustness of learning to hyperparame-
ter mistuning.

To demonstrate how well the heterogeneous versus homo-
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Figure 3: Original zebra finch spectrogram obtained from
https://en.wikipedia.org/wiki/Zebra finch and re-
sulting spectrograms obtained on testing for the 4000-neuron
network on three different synaptic configurations

geneous networks are able to learn the spectrogram, we com-
puted reconstructions with a 4000-neuron network (Figure 3).
Notice how when using the single time constant the spectro-
gram is completely lost while the Gamma spectrogram is re-
markably similar to the original.
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Figure 4: Test error of LIF networks of different sizes with hy-
perparameters tuned to reproduce a zebra finch spectrogram
on a 1000-neuron network.

Heterogeneity reduces learning time
We also explored the advantages of heterogeneity on a state-
of-the-art gradient descent learning method, Spike LAYer Er-
ror Reassignment (SLAYER) (Shrestha & Orchard, 2018) for
error back-propagation in spiking neural networks. We trained
a spiking neural network to classify Neuromorphic-MNIST (N-
MNIST) digits dataset (Orchard, Jayawant, Cohen, & Thakor,
2015), a spiking version of the original frame-based MNIST
dataset. We follow the original implementation in choices of
spike response kernels and network structure. The network
consists of 4 layers with a 34×34×2 input, followed by 3
dense layers of output size 512, 512 and 10 respectively.

To investigate the relationship between heterogeneity and
learning time, the only parameter changed is the time constant
of the spike response kernels. In the original implementation,
the synaptic models used in the network were homogeneous
with a single time constant τ=1ms. We experiment the hetero-
geneity by introducing three synaptic time constants τ=1ms,
2ms, 4ms, which was then evenly distributed to the neurons
in the network. Results show that the time for training and
testing accuracy to converge was greatly reduced n the het-
erogeneous network (Figure 5).
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Figure 5: Mean Classification results of NMNIST dataset over
10 independent trials using SLAYER
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Conclusion and Future Work
We found that adding time constant heterogeneity can dramat-
ically improve the accuracy, robustness and convergence rate
for training spiking neural networks across a range of tasks
and training methods. This suggests that heterogeneity may
be an important principle the brain uses to cope with diffi-
cult real world environments. It remains to be seen whether
these results are specific to the training methods considered,
and to heterogeneity of synaptic time constants in particular,
or whether they generalise to other methods and parameters
such as thresholds, refractory times, etc.
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