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Abstract
A large body of evidence shows that perceptual decision
making in humans and animals accounts for uncertainty
in the relevant stimulus variable. This suggests that the
decision is based on a distribution over stimuli given the
neuronal activity rather than single point estimates. The
likelihood over the stimuli captures this uncertainty for
a fixed neuronal response. Because the neuronal pop-
ulation response can be high dimensional, estimating a
per-trial likelihood can be challenging. Previous work has
thus focused on parametric models, which can introduce
a bias by ignoring noise correlations. Here, we present
a simple yet general method to decode a per-trial likeli-
hood based on neural networks. Our method applies to
discrete and continuous, as well as static and time-series
data. We demonstrate it on recordings from two experi-
mental visual paradigms in macaque V1 and V2.
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Introduction
Bayesian models of behavior have been widely successful in
explaining decision-making under various tasks in both human
and monkeys, frequently demonstrating that animals make
nearly Bayes optimal decisions (Ma & Jazayeri, 2014). This
suggests that the underlying computations are based on rep-
resentations of probability distributions rather than their indi-
vidual moments, such as the mean or the maximum (Pouget,
Dayan, & Zemel, 2003). Representations of probability arise
naturally in noisy systems, such as the brain. If one stimulus
s can yield several possible neural responses r, then each r
is naturally associated with a posterior p(s|r) or a likelihood
p(r|s)≡ Lr(s). While the posterior also accounts for prior ex-
pectations about s, the likelihood captures the information the
population response carries about the stimulus. It simultane-
ously encodes the best estimate of the stimulus (the peak of
Lr(s)) as well as the associated uncertainty (e.g. the width of
Lr(s)) (Ma, Beck, Latham, & Pouget, 2006).

Because r is often high dimensional, estimating a trial-by-
trial likelihood function from recordings of cortical population
responses is challenging. Existing methods typically make

strong parametric assumptions about the stimulus conditioned
distribution of the population response p(r|s), such as an in-
dependent Poisson (Graf, Kohn, Jazayeri, & Movshon, 2011)
or Poisson-like distribution (Ma et al., 2006). While these
assumptions considerably simplify computing the trial-by-trial
likelihood function, they can also introduce biases by ignor-
ing potential noise correlations between different neurons (see
Walker, Cotton, Ma, and Tolias (2018) Supplementary Figure
3) or subsequent time points, or internal brain state fluctua-
tions (see Denfield, Ecker, Shinn, Bethge, and Tolias (2018);
Ecker et al. (2014) for examples of conditional dependencies).

Here we present a simple yet general approach to estimate
the trial-by-trial likelihood function that makes no parametric
assumption about the stimulus conditioned distribution p(r|s)
and only requires knowledge of the stimulus prior p(s), which
is known to the experimenter in most experimental paradigms.
Our approach is completely generic and can be applied to
static or dynamic responses, as well as discrete or continu-
ous data. It relies on two key steps:

1. Instead of estimating the likelihood p(r|s) explicitly, which is
infeasible in most cases, we estimate it implicitly by recover-
ing an unnormalized likelihood from a model q(s|r,θ) of the
posterior using the known prior. θ denotes the parameters
of the posterior model.

2. We estimate the posterior q(s|r,θ) using a flexible proba-
bilistic model such as a neuronal network.

Because our method relies on estimating the posterior di-
rectly, it will work particularly well in situations when dim(s)�
dim(r). Estimating a conditional distribution over the lower di-
mensional s instead of a the high dimensional r substantially
simplifies the problem and allows us to use more flexible mod-
els such as neural networks. While algorithm yields a per-trial
likelihood Lr(s) for each r, it trades the ability to provide a dis-
tribution over r for a given s for a simplified estimation problem.

Here, we present the mathematical foundation as well as a
continuous and recurrent version of the algorithm. We recently
applied a discrete static version of this method to decode like-
lihood function from a population of V1 neurons responding to
orientation stimulus in monkeys (Walker et al., 2018).
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Derivation of the Algorithm
Implicit estimation of the likelihood Given data {si,ri}m

i=1,
we train a flexible model q(s|r,θ) of the posterior by minimiz-
ing the objective

m

∑
i=1
− logq(si|ri,θ) (1)

with respect to θ. Equation (1) is the Monte-Carlo estimate of
the expected Kullback-Leibler (KL) divergence

`(θ) = 〈D [p(s|R)‖q(s|R,θ)]〉R

between the true posterior and the model. Because the KL-
divergence is a strictly non-negative quantity, `(θ) = 0 if and
only if D [p(s|r)‖q(s|r,θ)] = 0 for each r except for sets of
measure zero. The minimum is attained at p(s|r) = q(s|r,θ)
which yields

p(r|s) ∝
q(s|r,θ)

p(s)
(2)

with a proportionality constant that depends on r, but not on
s. Again, note that the simplified estimation comes at the ex-
pense of the normalization constant, i.e. the method does
provide an estimate of likelihood Lr(s) not the conditional dis-
tribution of r given s.

Flexible models for finite discrete posteriors We use
neural networks to get flexible models for q(s|r,θ). In the
following, we describe the finite discrete and the continuous
case.

In the discrete case, the likelihood function, the posterior,
and the prior for each response vector r are represented by
vectors L,ps,q ∈ Rn where L = Lr(s) and n is the number
of different states s can be in. For instance, n = 2 in a task
where trials can have two possible outcomes. We use a deep
neural network f (DNN) (Goodfellow, Ian, Bengio, Yoshua,
Courville, 2016) to directly predict L = f (r) from the popu-
lation response vector r. To get the objective function, we
combine L and ps to compute the log posterior over the stim-
ulus s up to some scalar value b(r),

z≡ logps + logL = logq(s|r,s)+b(r). (3)

and take a softmax q = exp(z)/∑
n
j=1 exp(z j) to normalize it.

The network f is then trained to maximize the log posterior for
the available data

maximizeθ

1
m

m

∑
i=1

δ(si)
> logq(ri) , (4)

where δ(si) is a one-hot encoding of the stimulus si.

Flexible models for continuous posteriors To estimate
a flexible posterior model for continuous stimulus vari-
able, we use the idea of projection pursuit density estima-
tion (Friedman, Stuetzle, & Schroeder, 1984) recently re-
popularized as flow models (Dinh, Sohl-Dickstein, & Bengio,

2017). A flow model transforms random variables ξ from some
easy to evaluate source density pξ(ξ) into random variables
x = f (ξ) using an invertible and differentiable function f . The
density of x is then given by

log px (x) = log pξ

(
f−1 (x)

)
+ log

∣∣∣∣det
∂ f−1

∂x

∣∣∣∣ . (5)

The function f is usually implemented by a deep neuronal
network with special layers that are invertible and have an
easy to compute log-determinant of the Jacobian. The full
log-determinant is then simply the sum of the single log-
determinants.

In our case we use a conditional flow model s = f (ξ,r) that
generates a density q(s|r,θ) for each population response
vector r. Note that f needs to be invertible and differentiable
in s only. Because we can explicitly compute density values in
a flow model, we can use equation (1) to find the parameters
θ. After q(s|r,θ) has been trained, we use equation (2) to get
the likelihood function.

Experiments

We tested the discrete and continuous stimulus likelihood de-
coders on two distinct sets of macaque population recording,
each collected by different groups. All experimental protocols
were approved by the local authorities (Regierungspräsidium
Tübingen and Baylor College of Medicine Institutional Animal
Care and Use Committee).

Discrete stimulus task

Two male macaques performed a variant (Kawaguchi et
al., 2018) of the disparity discrimination task described in
Nienborg and Cumming (2009) while neuronal single and
multi-unit activity in visual area V2 was recorded using linear
multichannel recording electrodes (Plexon, Inc. V-probes, 24
channels). Monkeys had to classify trials into near and far,
based on the predominantly occurring disparity in a random
sequence of disparities. The signal strength on each trial was
defined to be the proportion of stimulus frames that show the
disparity from the class. The remaining frames of the trial were
randomly picked from a set of predefined disparity values in-
cluding the disparity value associated with the current class.
Here, data from a single session (939 trials) in one animal was
analyzed.

Continuous stimulus task

We obtained V1 population responses from two macaques
performing on orientation classification task as was presented
in Walker et al. (2018). Up to 96 channels of multi-unit ac-
tivities were recorded from each recording session, and the
contrast of the orientation stimuli were varied on a trial by trial
basis. There were total of 132 recording sessions, and for
each session, trials with same contrast were grouped into a
contrast-session. There were total of 546 contrast-sessions in
the whole dataset, with a total of 303,326 trials.

1043



Symbol Description Possible Values
Nh size of hidden state {1,2,3,4,5,6}

λ learning rate
{0.0025,0.005,0.01,

0.02,0.04}

Table 1: Possible values of hyperparameters during RNN
model selection.

Models

Discrete case We modeled the mapping f (r) as a recurrent
neural network (RNN) consisting of a single-layer gated recur-
rent unit (GRU) (Cho et al., 2014), which had a hidden state
size of Nh, a learned initial hidden state and the same linear
readout at each time step. The training to validation set split
was set to 70%:30%. We trained the network on the training
set with a fixed learning rate of λ while monitoring its per-
formance on the validation set for early stopping, which was
carried out once the validation set loss failed to improve over
400 epochs. Upon training completion, the parameter set that
produced the lowest loss on the validation set was restored.
Using a random grid search over candidate hyperparameter
values (Table 1), we found Nh = 2 and λ = 0.02 to be the
combination that yielded the lowest loss on the validation set.

Continuous case For the continuous task, we modeled the
mapping ξ = f−1(s,r) by a monotonously increasing function
in s using linear interpolation between 10 base points gi and
predefined stimulus locations si. This choice is motivated by
the fact that any mapping between two one-dimensional con-
tinuous distributions can be written as (F −1

2 ◦F1)(s) where
Fk denote the cumulative distribution functions (cdfs). As both
cdfs are monotonously increase, so must be their inverse and
their composition. The base points gi were predicted from
each r using a 3-layer fully-connected ResNet (He, Zhang,
Ren, & Sun, 2016) with a final softmax layer followed by a
cumulative sum and appropriate scaling.

As in Walker et al. (2018), separate instance of the model
were fit for each contrast-session. Trials from a contrast-
session were divided into training and validation sets based
on a 80%:20% split. We trained the network on the training
set with a fixed learning rate of 1e− 4 and monitored its loss
on the validation set. Upon training completion, the parameter
set that produced the lowest loss on the validation set over the
course of training was restored.

Results

Here we demonstrate that our approach on two real world
datasets. Our intention is not to provide biological insight but
to showcase that our method behaves reasonably given our
current knowledge about the neural system. Because of lim-
ited number of trials, we report the behavior on the validation
set used for early stopping. In a real experiment, the decoder
would be used on all data (including training), just like a fitted
tuning curve.

Figure 1: Mean log likelihood ratio on the validation set as
a function of signal strength for different readout times (top)
or as a function of readout time for different signal strengths
(bottom). Positive signal strength corresponds to near stimu-
lus class, and vice versa. Vertical lines in the bottom plot mark
the time points where the sigmoidal curves in the top plot were
extracted. The error bars and bands represent the standard
error of the mean.

Discrete case We evaluate the resulting model by the log-
likelihood ratio log p(r|s=near)

p(r|s=far) at different time points during

the trial (Fig. 1, bottom). Since the prior distribution over
the stimulus classes was uniform, this also reflects the log-
posterior ratio. As expected, the evidence for a particular
class increases over time (Fig. 1, top) and becomes more pro-
nounced for higher signal strengths.

Continuous case We visually evaluate the model by plotting
the likelihood over different stimulus orientations for different
values of the contrast. For low contrast the uncertainty about
the stimulus is higher so the likelihood curves become wider,
as expected (Fig. 2).

Summary
We developed a simple yet general deep-learning based
method for decoding per-trial likelihood functions from popu-
lation responses which makes substantially less assumptions
about the form of the likelihood function. Our method thus
deviates from the traditional approach where likelihood func-
tions are computed by using a conditional distribution over
the neural responses r given s. Estimating this distribution is
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Figure 2: Average likelihood function decoded by the continu-
ous decoder for each contrast. On each trial, the decoded like-
lihood function over the continuous stimulus orientation was
shifted such that the peak of the normalized likelihood func-
tion occurred at 0◦. The centered likelihood functions were
then averaged across all trials within the same contrast bin.

very hard due to the curse of dimensionality (Nagler & Czado,
2016) requiring infeasibly large number of samples. While the
use of strong parametric assumption on the distribution, such
as conditional independence, can substantially decrease the
sample size needed for the parameter estimation, this places
heavy constraint on the distribution which is often only justi-
fied by computational feasibility. Our method avoids these is-
sues by directly learning the likelihood function from the data
and avoids modeling in the generative direction s→ r. This
means that our resulting approximation of the likelihood func-
tion L̂r(s) does not yield a generative model of r given s.
However, as long as our interest lies on the likelihood func-
tion Lr(s) as a function of s, our method correctly approxi-
mates the true likelihood function Lr(s) up to a multiplicative
constant (or constant offset in log domain), and typical appli-
cations of likelihood functions are insensitive to such constant
multiplication.
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