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Abstract

We introduce neural topic modelling - an unsupervised,
scalable and interpretable neural data analysis tool which
can be applied across different spatial and temporal
scales. The aim is an approach that can handle the ever-
increasing number of neurons recorded by high channel
count multi-electrode arrays. Neural topic modelling is
based on latent Dirichlet allocation, a method routinely
used in text mining to find latent topics in texts. The
spike trains are converted into “neural words” - the pres-
ence or absence of discrete events (e.g. neuron 1 has a
higher firing rate than usual). Neural topic modelling re-
sults in a number of topics (probability distributions over
words) which best explain the given co-occurrences of
neural words over time. Applied to an electrophysiolog-
ical dataset of mouse visual cortex, hippocampus and
thalamus neurons, neural topic modelling groups neu-
ral words into topics which exhibit common attributes
such as overlapping receptive fields or proximity on the
recording electrode. It recovers these relationships de-
spite receiving no knowledge about the cortex topogra-
phy or about the spatial structure of the stimuli. Choos-
ing neural activity patterns as neural words that are rele-
vant to the brain makes the topics interpretable by both
the brain and researchers, setting neural topic modelling
apart from other machine learning approaches.
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Introduction

Recent advances in neuronal recording techniques have al-
lowed researchers access to large datasets of neuronal activ-
ity. In addition, electrophysiological recordings are often made
in freely moving animals carrying out complex behaviours dur-
ing multiple experimental paradigms (Stringer et al., 2018).
Therefore researchers are confronted with the task of com-
bining neural data on different temporal and spatial scales with
experimental and behavioural variables. How to go about the
analysis of such rich datasets is a huge challenges for neuro-
scientists and current analysis methodologies.

There are several main challenges for any new methodol-
ogy of neural data analysis. 1) New analyses need to be scal-
able for larger numbers of neurons, preferably for hundreds or
thousands of neurons. This is where e.g. correlation-based
analysis methods will soon reach their limits (the number of

correlations to consider increases quadratically for pair-wise
correlations and even more so with higher correlations). 2)
Recordings are often done across different temporal and spa-
tial scales (e.g. a combination of electrophysiological record-
ing, Ca2+ imaging, local field potentials, etc.) and new anal-
yses should be able to handle all of them and potentially
even allow combining their analyses. 3) The application of
advanced machine learning techniques to neural data have
provided researchers with fascinating results, but at the same
time it is unclear whether the structure found in the data us-
ing these results corresponds to something that could actually
be used by the brain itself, and it is therefore unclear how the
results should be interpreted. Creating analysis methods that
are interpretable (both by the brain and by researchers) would
therefore be helpful to the field and further our understanding
of how the brain encodes information.

We propose a new approach to these challenges: neural
topic modelling, a neural data analysis tool based on latent
Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003). LDA is
routinely used in text mining to find latent topics hidden in texts
(e.g. in newspaper articles or tweets). In neural topic mod-
elling, neural data is converted into the presence or absence
of discrete events (e.g. neuron 1 has a higher firing rate than
usual), which we call “neural words”. This creates a univer-
sal framework for neural data on different temporal and spa-
tial scales since any type of data can be translated into this
common format. Basing the neural words on neural activity
patterns that are detectable by downstream neurons ensures
that the input to neural topic modelling is relevant to the brain.

Neural topic modelling provides an ideal starting point for
the analysis of large-scale neural datasets. As an unsuper-
vised tool, it uncovers relationships between neurons that we
expect to find (visual receptive fields in visual cortex neurons),
but also relationships that are more surprising (neurons in
the visual cortex and thalamus exhibiting the same receptive
field). It is therefore a promising method to inform researchers
of possible interesting analysis directions.

Methods

To demonstrate the validity of neural topic modelling we anal-
ysed an electrophysiological dataset of 367 neurons recorded
with a Neuropixel electrode (Lopez et al., 2016) from a head-
fixed mouse viewing spatial noise (sparse black and white
squares on grey background). The dataset includes neurons
located in the visual cortex, the hippocampus and the thala-
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Figure 1: Example topic receptive fields. Examples of positive receptive fields (weighted mean probability) (A, D, E) and a
negative receptive field C. Positive receptive field in A only includes neural words from neurons in the visual cortex on the top
part of the electrode (left), whereas the other receptive field show no such preference towards a particular brain region. The
colour indicated the probability of a word happening given the stimulus location. B) An example of a negative receptive field.
The receptive fields were masked at 0.8 of maximum value of weighted mean probability maps and overlaid on the visual field
where black and white squares were shown during the experiment.

mus.

LDA receives as input a number of documents and the
words present in those documents. To create the “neural doc-
uments” the recording was divided into time windows during
which at least one square was present. The spikes were trans-
lated into two simple neural word types: 1) increased firing
rate in neuron i, 2) decreased firing rate in neuron i. The cre-
ating of neural words in this manner means that each neuron
in the recording can give rise to many neural words.

LDA assumes that the words are distributed across docu-
ments based on a set of distinct topics - a topic being a prob-
ability distribution over words (e.g. word A has a 0.01 prob-
ability to be in topic 0 and a 0.3 probability to be in topic 1).
Therefore LDA gives an estimation of a set of topics which
explain the given occurrences of words in the documents.

Since the LDA algorithm can is prone to finding local min-
ima, we ran 100 iterations with different random seeds. The
resulting topics from the 100 iterations were then clustered
using K-Means, resulting in the topic clusters that are each
comprised of very similar topics (similar probability distribu-
tions over neural words). For each topic cluster we calculated
the weighted mean probability distribution over words.

Results

Neural topic modelling is a neural data analysis tool which re-
sults in groups of neural words based on common characteris-
tics such as preferred stimulus appearance location or location
within the same brain region.

The results from applying LDA 100 times to the dataset
were clustered to form topic clusters and their homogeneity
was confirmed visually (data not shown). Each topic clus-
ter was made up of topics found during separate LDA runs.
Topic clusters were comprised of between 16 and 100 topics,
where a topic cluster of size 100 means that that particular
topic (probability distribution over neural words) was found in
every single LDA run. For each topic cluster we related the
neural words to the locations of their respective neurons on
the electrode and calculated the weighted mean probability
distribution over the ten neural words with the highest weights.
To visualise the receptive fields of a topic cluster, we investi-
gated the relationship between the topic clusters and stimulus
location.

About 1/3 of topic clusters exhibited a concentration of neu-
ral words from a spatially limited region on the electrode (0.4
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Figure 2: Topic receptive fields. A) The probability of a word happening given the stimulus location across all words. B) The
weighted mean probability for four topics with positive receptive fields (solid lines) and one topic with a negative receptive field
(dashed line). Overlap of positive and negative receptive fields from different topics masked at 0.8 of max value of weighted

mean probability maps.

-1 mm) (for an example see Figure 1A). The borders of these
regions correspond well with the boundaries between visual
cortex and hippocampus, and hippocampus and thalamus.
Some topic clusters are even further limited to only a sub-
region of the visual cortex or the thalamus , possibly reflecting
topic clusters being restricted to neural words from neurons of
a particular cortical layer or thalamic nucleus.

Several topic clusters exhibit a clear pattern of either a
small region to which the words in the topic respond pref-
erentially (positive receptive field, see Figure 1A, D, E) or a
small region to which none of the neurons respond to prefer-
entially (negative receptive field, see Figure 1B). Visual recep-
tive fields can be found also in about 1/3 of all topic clusters,
and some of them also exhibit a limitation to a particular brain
region as detailed above (Figure 1A). We show four mostly
non-overlapping receptive fields, three with positive receptive
fields and one with a negative receptive field.

Running the same analysis for only the visual cortex neu-
rons results in topic clusters that are only sensitive to the re-
gion shown in Figure 1A. Interestingly, when concentrating the
analysis on this smaller subset of neurons, the topic clusters
correspond to separate, mostly non-overlapping sub-regions
of a larger receptive field (see Figure 2B). Additionally, some
topic clusters were brightness-sensitive and reacted exclu-
sively to black squares but not white squares (data not shown),
something that was not seen in other topics and not found
when using the whole dataset.

We verified that the weights within a topic were not solely
driven by number of times a word occurred or the word order
in the input (data not shown).

Discussion

Neural topic modelling discovers distinct topics - groups of
neural words (neural activity patterns) - in which the neural
words are similar in their preferred stimulus location and/or
spatial proximity on the recording electrode without having to
search for these characteristics explicitly. In a dataset includ-

ing visual cortex, hippocampus and thalamus we found topics
(groupings of neural words) with visual receptive fields in each
of the three brain regions.

Some of the topics found were largely expected (visual re-
ceptive fields in visual cortex) but other less so (visual recep-
tive fields in hippocampus, thalamus, and spanning visual cor-
tex and thalamus). Other topics reflected the local connectiv-
ity of the brain regions, since neurons located close to each
other were grouped into topics together. Without more de-
tailed information on the exact location of the electrode it is
not possible to confirm whether similar neural activity is based
on synaptic connections or functional connectivity without a
direct connection. Further knowledge of the placement of the
electrode among the layers and nuclei will only enhance the
quality of the interpretation of the results.

The visual receptive fields found in this data set are close
to each other if not slightly overlapping in relation to the visual
field. This can be explained by the design of the Neuropixel
electrode with which the recording was made. The electrode
is long, but very thin, and therefore only records from few neu-
rons in each layer of the brain and very probably along a visual
cortex column. It is therefore not surprising that the receptive
fields of the neurons in the visual cortex are in a similar lo-
cation of the visual field. It is nevertheless interesting that
the neuronal words from the deeper regions show a slightly
shifted preferred region.

One focus of neural topic modelling is the potential inter-
pretability of the topics by both the brain and the researchers.
If the neural words in a given analysis are chosen so that they
can be detected by downstream neurons, then each topic as
a combination of neural words will be detectable by the brain
as well. In addition, the resulting topics are interpretable by
researchers in terms of their combinations of neural words
(e.g. a mixture of similar or dissimilar neural words) and in
terms of the physical origins of those neural words (neural
words from neurons in the same or different brain regions).
Importantly, the methodology circumvents the combinatorial
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explosion of possible neuron combinations by converting neu-
ral activity into relevant events, resulting in a scalable method
for very large datasets. The general approach to the data also
means that many different types of neural data recordings can
be analysed without the need to have all datasets on the same
spatial or temporal scale.

In addition to the straightforwardly interpretable topics found
by neural topic modelling outlined above, there remain several
topics that are not connected to the two characteristics we
were searching for (visual receptive field and spatial proximity
on electrode). This does not mean that these topics are mean-
ingless; on the contrary, it is possible that we have not looked
for the correct experimental variable for that topic. We expect
to be able to find topics that are sensitive to visual stimulus
orientation and movement, other sensory experiences or the
animals’ behaviour. It will be interesting to apply the model
to more complex datasets e.g. in behaving mice with more
advanced experimental paradigms, or to datasets where the
neural representation of the stimulus structure is less clear
e.g. for olfactory experiments.

Conclusion

Neural topic modelling is an unsupervised analysis tool that
receives no knowledge about the cortex topography nor about
the spatial structure of the stimuli, but is able to recover these
relationships anyway. The method provides an ideal starting
point for the analysis of large-scale neural datasets by high-
lighting possible interesting directions for further analysis. The
combination of scalability, applicability across temporal and
spatial scales and the biological interpretability of neural topic
modelling sets this approach apart from other machine learn-
ing approaches to neural data analysis. We will make neural
topic modelling available to all researchers in the form of a
Python software package.
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