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Abstract

Mechanistic models of cognitive phenomena often make
use of neural networks, which allow researchers to ex-
amine relationships between neurobiology and the com-
putations suspected to underlie cognition. These mod-
els typically make use of neural firing rates, as do analy-
ses of in-vivo data, with the dimension of neural dynam-
ics receiving special attention. Treating time-binned spik-
ing activity as a sequence of binary vectors (spike-words)
should prove complementary to rate-space analyses, and
has been shown to provide links with statistical physics.
We investigate the interaction between these two analy-
ses using theory and simulations to show how signatures
of rate-dynamics are found in spike-word distributions.
We find that a global integration over the eigenvalues of
linear dynamics local to attracting subspaces can mod-
ify spike-synchrony, and we quantify how this impacts in-
formational and thermodynamic properties of these sys-
tems. The research outlined here will have implications
for the interpretation of neural data, the use of popula-
tion codes for tasks such as Bayesian inference, and for
various resource rational models attempting to bridge the
gap between computation and implementation.
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Introduction

Computational neuroscience has seen exponential growth in
the number of simultaneously recorded neurons over approx-
imately 60 years (Stevenson & Kording 2011). The prolifer-
ation of micro-electrode arrays, whole-brain calcium imaging
(e.g. Kim et al 2017), and other technologies have made
spatially and temporally precise large scale neural data rela-
tively common. Temporal resolution at the scale of membrane-
fluctuations has recently been achieved in optogenetics (Pi-
atkevich 2018), and an expansion of techniques for analyzing
networks of neurons has been ongoing in response to multi-
unit data acquisition (Stevenson & Kording 2011). Methods for
assessing the dimensions along which neural data vary are
especially important in this context, as they allow researchers
to ignore unimportant detail and develop intuitive theories of

network function (Cunningham & Yu, 2014; Pang, Lansdell, &
Fairhall, 2016).

Rate spaces

A typical first step towards such analyses involves rate-coding
a neuron’s output by convolving a smoothing kernel with each
acquired spike-train. Dimensionality reduction techniques
may then be applied on a multidimensional array of neural
firing rate data. The array’s dimensions will be specified by
(1) the neuron being recorded (2) the time within a task for
a given recording (3) the repetition (trial) number associated
with the recording and (4) any separation by task condition.
This applies equally well to data generated by a neural net-
work model. Dimensionality reduction therefore requires de-
termining which covariance matrix to generate from the data
for inspection, which in turn depends on a researchers scien-
tific question of interest.

One of the most natural covariance matrices to examine
arises from averaging over trials in a condition. This removes
one dimension of the four dimensional array, leaving a ma-
trix of firing rates by time for each task condition. Performing
PCA on this data (i.e. per condition) will indicate, on aver-
age, how neurons’ activities covary temporally. If a substantial
fraction of the population variance is accounted for by only
a few (e.g. tens of) components, single trial population data
may then be usefully interpreted by analyzing trajectories in
the space these span. This yields low-dimensional dynamics
in the most common sense, where, to a good approximation,
the state of the whole population evolves over time within a
constrained region of the larger, a-priori accessible space.

There are important theoretical reasons to suspect low di-
mensional dynamics in real neural populations, and they have
been widely observed (e.g. Churchland et al 2012). Limb
movements, for example, require a radical reduction of dimen-
sionality from controlling populations to effectors. Joint angles,
velocities, and accelerations in an arm or leg have tens of de-
grees of freedom, compared with the hundreds or thousands
of dimensions in directly associated neural activity.

Spike-word distributions

One alternative to rate-based analyses involves binning time
and encoding spiking activity over a population as a sequence
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of binary vectors s, termed spike-words (Schneidman et al
2006). These spike-words then have distributional statistics
of interest, which provide an alternative characterization of a
network’s state, and can be interpreted in statistical mechani-
cal terms with the use of Ising models. Ising models are max-
imum entropy (i.e. least possibly structured) models defined
by the following pair of equations:

E =− ∑
<i, j>

Ji jsis j−H ∑
i

si

P(E) =
1
Z

exp(−βE)

Here E is a function fit to the data by determining Ji j and H,
whereas si and s j are the components of a spike word (which,
again, is a boolean list of which neurons are spiking at a given
time). Beta is an analogue of (inverse) temperature, and can
be considered constant for the present, as can Z, a normal-
izing factor. The summation over pairwise data terms is in-
dexed according to a network associated with the data which
encodes an effective connectivity hypothesis in a neural net-
work setting. Traditionally, these pairwise terms reflect the in-
fluence of proximal lattice sites in a crystalline arrangement
of magnetic atoms. In the general case, an arbitrary topol-
ogy can be used in place of this lattice as a problem-specific
way of instantiating node interdependence. This hypothesis is
therefore related to pairwise correlations in the data, and for
small networks using an all-to-all topology is reasonable, be-
cause the complete covariance matrix has O(n2) terms (given
n neurons). The sum over si terms is related to the average
value of nodes in the connectivity graph, i.e. the spike rates of
individual neurons.

Ising models, and statistical physics more generally, are of
importance to neuroscientists because they were developed
to explain how complex, coordinated behaviors can emerge
from systems of many simple, interacting components. Within
neuroscience, they have been used to demonstrate that var-
ious neural systems appear to be ’nearly critical’, which has
many implications for their behavior, their information process-
ing, and their responses to perturbation. A review of this lit-
erature would require a prohibitive amount of space, but the
equations above illustrate that such models essentially rely on
first and second order spiking information.

Varying spike-rates produce time-averaged
spike-word distributions

Intuitively, spike-word distributions should contain some infor-
mation about rate-space dynamics, and vice versa. In a two-
neuron system, for example, if both neurons always spike syn-
chronously, their rates must always be equal, and dynamics
in the rate-space must therefore ”live” in the one-dimensional
subspace defined by this equality. Is there a corrosponding
claim we can make for spike-statistics on the basis of rate-
dynamics? As will be demonstrated the answer is affirmative,
even under the assumption of Poisson spiking.

Consider a neural network defined by the equation

ẋ =−x/τ+Aφ(x)+η

which has been studied extensively (Sompolinsky 1988; Mas-
trogiuseppe & Ostojic 2018). Here x is a vector of neural fir-
ing rates, τ is a time constant, A is a matrix governing cross-
neuron interaction (i.e. a connectivity matrix), and η is a noise
term, and φ is a monotonic nonlinear function. Under certain
conditions this model can effectively be reduced to the linear
dynamical system:

ẋ = A′x+η
′ (1)

In general, there is also typically some scale at which non-
linear dynamics in a system are locally linear, under mild as-
sumptions, so that studying linear systems provides important
insight into noninear ones.

Given a system like (1), the connectivity matrix A′ can be
used to instantiate low-dimensional or attractor dynamics. To
gain an understanding of the impacts these dynamics have on
spike-word distributions, we can establish attractive points or
lines within a two-neuron rate space. As is well known, linear
dynamical systems have analytic solutions, so that (1) has a
timecourse described by:

x(t) = x(0)eAt +
∫ t

0
eA(t−τ)

η(τ)dτ (2)

This shows that the rate dynamics are determined by a tran-
sient arising from the network’s initial conditions and by a con-
volution of a matrix exponential with the system’s input. Matrix
exponentials are diagonalized by the same transforms as the
matrices being exponentiated, and their eigenvalues are the
exponentials of the latter as well. Taken together, this means
that the eigenvalues of the connectivity matrix A determine
the time constants associated with decay along any dimen-
sions which we care to bias the system against varying along.
The eigenvalues of this matrix exhibit a quantitative relation-
ship with the spike-word distribution the system produces.

To every point in a neural network’s rate space, there cor-
rosponds a spike-word distribution, which may of course be
marginal or conditional on other factors. In the low-intensity,
independent Poisson case, each point’s associated distribu-
tion is especially simple, because it is effectively the joint dis-
tribution of two independent low-probability coin-flipping pro-
cesses acting at high temporal resolution. Of course when
we observe the system over some period of time, we will only
rarely have access to these distributions. Instead, the net-
work will produce spikes according to a given point in rate
space only transiently. The observed spike-word distribution
will therefore reflect a weighted average of infinitely many in-
dividual spike word distributions, with each being weighted by
the fraction of time the system spends at the corrosponding
point in rate-space. That is, the observed spike-word distri-
bution is a path-integral over distributions, with weights deter-
mined by some function of the dynamics matrix and input to
the system.
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Given independent isotropic noise across neurons, the ex-
istence of an attractor in the network’s rate dynamics will es-
sentially operate as a coloring (that is, the opposite of whiten-
ing) transform. Put differently, it will ”stretch” the noise accord-
ing to the eigenvalues of the attractor. In the Bernoulli limit just
discussed, the spike-word distribution is then easy to charac-
terize mathematically.

The Bernoulli limit
Consider one particular constant rate configuration, given two
neurons, such that neuron 1 fires at x1 Hz and neuron 2 fires at
x2 Hz. Then assuming independent Poisson spiking, neuron
1 is well described by a Bernoulli process with a probability
of spiking in each 1 ms time-bin given by x1[Hz]/1000[ms]≡
p1[spikes/ms], and similarly for neuron 2.

Now spike word probabilities are given transparently by the
joint distribution

P(s1 = 0,s2 = 0) = (1− p1)(1− p2)

P(s1 = 1,s2 = 0) = (p1)(1− p2)

P(s1 = 0,s2 = 1) = (1− p1)(p2)

P(s1 = 1,s2 = 1) = (p1)(p2)

where S1 denotes the binary variable indicating spiking of neu-
ron 1 in a given time-bin, and similarly for neuron 2. Extend-
ing this to the case of time dependent probabilities pi requires
computing expectation values, i.e. averages over time. While
the details of this integration will be omitted for brevity, they
are straightforward and admit various flexible assumptions.

A simple illustrative case involves parameterizing p1 and p2
themselves as random variables according to a Gaussian dis-
tribution centered at point (p̄1, p̄2), with principal components
rotated through an angle θ and variances given by (σ2

1,σ
2
2),

or equivalently a covariance matrix

Σ =

[
σ2

1 0
0 σ2

2

]
which is diagonal - without loss of generality - precisely be-
cause of our choice of coordinates. Expectation values are
easily performed given the associated gaussian integrals, with
the resulting spike-word distribution given by:

Cindep. var(θ,σ1,σ2) =
1√
2π

sin(θ)cos(θ)(σ1−σ2)

P(0,0) = (1− p̄1)(1− p̄2)+Cindep. var

P(1,0) = (p̄1)(1− p̄2)−Cindep. var

P(0,1) = (1− p̄1)(p̄2)−Cindep. var

P(1,1) = (p̄1)(p̄2)+Cindep. var)

This is a satisfying result for several reasons: First, we see
that the same correction term is being applied to each spike
word probability, with synchronous firing and synchronous si-
lence being enriched relative to Poissonity by the same fac-
tor (and similarly for asynchrony). Next, we see that it is
precisely the variances along each dimension in rate space

which dictate the correction terms. Finally, the problem’s in-
herent symmetry between neurons 1 and 2 is reflected in the
term sin(θ)cos(θ) which peaks for θ = π/4. For poisson pro-
cesses with correlation ρ, this can be further extended by a
second correction term given

Ccorr. =
1
2
(p̄1 + p̄2)−

1√
2π

σ2(sinθ+ cosθ)− p̄1 p̄2

so that each probability is in fact given by

P(s1,s2) = P(s1,s2)static, indep +[1−ρ]Cindep. var +ρCcorr.

which has intuitive properties under inspection asymptotic
cases such as the ρ = 1 result.

Both of the results indicated above hold equally well for
networks comprised of greater numbers of neurons, because
pairwise spike-sychrony statistics depend on marginal pair-
wise distributions of rates. These marginal pariwise distribu-
tions can then be examined via the equations given. Third-
order spike synchrony statistics are determined by a simi-
lar marginalization argument, but these and higher interac-
tion terms grow combinatorially in number with neuron count,
and therefore are difficult to estimate from data. The work we
will present expands on the mathematics above, relaxing the
Poisson-spiking assumption, treating transfer-function related
corrections to equation (1), characterizing changes in spike-
word distribution entropy, and examining the implications of
these for various statistical mechanical quantities.

Network simulation

As noted above, if one injects uncorrelated white noise into
a two-dimensional attractor network based on (1), assuming
that A has two real, non-positive eigenvalues, the resulting
dynamics effectively rotate and color the noise. Variance scal-
ing is induced along the eigendirections according to each
one’s eigenvalues. Thus, given Gaussian noise, one should
observe a Gaussian distribution of firing-rates over sufficiently
long time-scales, and the spike-word distribution for the sys-
tem should thus behave as predicted above.

To assess this prediction, we simulated various linear dy-
namical systems, and present one such simulation now. An
attractor was centered at x = (25 Hz,25 Hz) in the neural fir-
ing rate space with θ = π/4 and 10ms auto-correlated Gaus-
sian noise was injected. The noise had a mean of 0 and stan-
dard deviation of 0.5, giving a standard deviation along the
elongated attractor axis of approximately 12.5 Hz. The spe-
cific dynamics matrix used was

A =

[
−12.5 7.5

7.5 −12.5

]
which has eigendirections (1,1) and (-1,1) with associated
eigenvectors (-5, 30). These firing rates were chosen to be ap-
proximately physiologically realistic for cortical neurons, and
a simulation-time of 30 minutes was used as a trade-off be-
tween longer simulations (which yield better sampling of the
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Figure 1: The time course of noise driving our dynamics ex-
ample. It is a vector comprised of two independent 10ms
auto-correlated Gaussian noise processes with mean zero
and standard deviation 0.5, sampled every 1ms.

rate space) and shorter ones (which consume fewer compu-
tational resources). Given these parameters we consistently
find an increase in synchronous spiking corrosponding to ap-
proximately 10% greater incidence than would be expected
under a Poisson distribution generating spikes at the average
rates.

Discussion

We have presented a summary of ongoing work undertaken
to characterize the relationship between spike-word distribu-
tions and rate-space dynamics. We find that attracting sub-
spaces of the rate dynamics do indeed systematically modify
spike word distributions. These changes to the spike word
distributions can be substantial and they broadly result from
the spread of rates along the line of equality in each pairwise
subspace, relative to orthogonal spread. This suggests that,
in analyses of neural data exhibiting low-dimensional dynam-
ics, the spatial orientations of those dynamics play an impor-
tant role in determining spike word distributions. In particu-
lar, this work suggests neural data should be examined for
spread across various dimensions in the pairwise rate spaces
in order to bound how much of the observed excesses of pair-
wise synchrony in spike-words is attributable to such dynam-
ics. This will have implications for our understanding of statis-
tical physics approaches which indicate criticality, and in turn
on downstream translations of such work into computational
theories of cognitive function.

Acknowledgments

The authors do not wish to acknowledge specific sources of
funding at this time.

Figure 2: The dynamics of the driven linear dynamical system;
Blue denotes earlier simulation times and red denotes later
ones.
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