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Animals can transfer knowledge that was learnt 
previously and infer when this knowledge is relevant. 
Frequently, the relations between elements in an 
environment or task follow hidden underlying 
structure. We suggest that animals represent these 
underlying structures using abstract basis sets that are 
generalized over particularities of the current 
environment, such as its stimuli and size. We show that 
this type of representation allows inference of 
important task states, correct behavioural policy and 
the existence of unobserved routes. We further 
conducted two experiments in which participants 
learned three maps during two successive days and 
asked how the structural knowledge that was acquire 
during the first day affect participants behaviour during 
the second day. In line with our model, we show that 
participants who have a correct structural prior are able 
to infer the existence of unobserved routes and are 
able to infer appropriate behavioural policy. Therefore 
supporting the idea that abstract structural knowledge 
can be acquired and generalised across different 
cognitive maps.  
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Introduction 

 
Relationships between elements in different 
environments often follow stereotypical patterns 
(Kemp & Tenembaum). Social networks, for example, 
are organized in communities (Grivan & Newman). 
The cycle over the seasons and the appearance of 
the moon in the sky, follow a periodic pattern. 
Hierarchies are also abundant, for example, a 
management organization in a workplace. 
Representing such structures confers theoretical 

advantages in learning when encountering a new 
environment. In order to transfer structural knowledge 
from one set of sensory events to another, it should 
be represented in a way that is disentangled from the 
sensory stimuli and the particularities of the current 
task.  
We can think of representing all tasks as graphs, 
each node on the graph is a particular sensory 
stimulus that is currently experienced, for example, 
observing the shape of the moon. Then, an edge 
between two sensory stimuli implies a transition 
between sensory states; a round moon will be 
followed by an elliptic moon. These graphs can have 
different structural forms (Kemp & Tenembaum) The 
lunar graph and the seasonal graph will all be circular; 
the social network graph will have a community 
structure;  and the spatial environment will have a 
transition structure that respects the translational and 
rotational invariances of 2D space.  Can humans 
extract such abstract information and use it to 
facilitate new inferences? If so, how can this 
knowledge be represented efficiently by the brain? 
Here we show that humans extract structural 
regularities in graph-learning tasks. When observing 
a new sensory environment with familiar structural 
form, they infer the existence of paths they have 
never seen, and make novel choices that are likely 
beneficial. In order to understand these effects, we 
investigate computational mechanisms in which 
flexible generalisation of structural knowledge is 
achieved using a basis set representation for each 
structural form. This type of representation highlights 
key statistical properties of the graph structure but 
suppress environment-specific particularities 
(Freguson & Mahadevan) We use the Hidden Markov 
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Model (HMM) framework to show how structural form 
can be inferred and transferred.  

 

Results 

We created a task in which agents and humans learn 
abstract graphs (Figure 1).  The graphs belong to two 
different structural forms, a graph with transition 
matrix that obeys translational and rotational invariant 
symmetry (Hexagonal graph) and graphs that have 
underlying community structure (Figures 1). Each 
node on the graph corresponds to a sensory stimulus 
(a picture). Each edge implies that these sensory 
stimuli can appear directly one after the other. The 
agents and participants learn the graphs during 
repeated blocks of the task. During each block, they 
learn the associations between stimuli by observing 
pairs of connected stimuli (states). Following the 
learning phase, we examine their knowledge of the 
graph in several ways: 1) testing memory of the 
associations between pairs of pictures 2) navigation 
on the graph; starting from a source picture, 
participants repeatedly choose between two of the 
picture’s neighbours until reaching the target with the 
aim to do so in the smallest number of steps. 3) 
Participants/agent are asked to report which of two 
pictures is closer to a target picture (without 
feedback). Using this task, we asked whether our 
participants/agent can infer the structural form of the 
underlying graph and transfer this knowledge to 
better accomplish the task.  To test for transfer of 
structural knowledge, we conducted two behavioural 
experiments. In each experiment, we divided 
participants into two different groups. One group was 
exposed to graphs with the same structural form (but 
different images) on both days.  The second group 
was exposed to graphs with different structural form 
(and images) on each day (Figure 1). This design 
allows us to control for all effects that are independent 
of the structure of the graphs as the task is 
independent of the structural form and its identity is 
not explicitly observed by the participants. 
 

Inferring and transferring graph structure  

In order to understand better the problem we consider 
model of this task. The task of the agent is to learn 
the graph.  In a HMM, this task is separated into 
learning the distribution of sensory state associated 
with each graph node (termed the emission matrix, 
B), and the probability that each graph node leads to 
every other (termed the transition matrix, A). 
Therefore, the representation of the transition 
structure is naturally disentangled from the sensory 
information. Using these two matrices, the agent can 
estimate the distances (number of links) between two 
pictures.  
If the agent has previous experience of the exact 
transition matrix, then the problem changes from 
learning a complete graph to  (1) inferring which 
previously experienced transition matrix is relevant to 

the current problem,  and (2) learning the emission 
matrix (as before). Inferring the transition matrix 
rather than learning it allows inference of links that 
were never observed. To perform structure inference, 
the agent estimates the probability of the sequence of 
observations (O) given each candidate transition 

matrix, 𝑝(𝑂|𝐴𝑥) and invert these probabilities using 
Bayes’ rule to compute 𝑝(𝐴𝑥|𝑂). 

 
 
Figure 1: Graphs structures and experimental design. 
 
Approximating the transition matrix using basis 
sets 
Representing the transition matrix itself does not 
allow generalization over tasks that share the same 
structural form but differ in particularities such as 
graph size.  To overcome this problem we 
approximate the transition matrices using basis sets 

(𝑈𝑠𝑡) such that 𝐴~𝑓(𝑈𝑠𝑡𝑆𝑠𝑡𝑈𝑠𝑡
𝑇), st is a particular 

structural form and S is a diagonal matrix of weights 
(figure 2). An important feature of the basis sets is 
that the basis vectors can be stretched and 
compressed to adjust for different graph size 
(Freguson & Mahadevan).  Each basis set can be 
controlled by parameters (θ) that can be inferred 
according to Bayes rule: 𝑝(𝜃|𝑆𝑡, 𝑂) ∝ 𝑝(𝑂|𝜃, 𝑆𝑡)𝑝(𝜃) . 
The parameters can be the size of the graph, the 
number of clusters, the number of probable 
connecting nodes etc. Here, for simplicity, we 
assumed the number of nodes of both graphs is 
known and the number of nodes in each cluster 
should be equal. 

 
Figure 2: Inferring structure using basis sets  
 
Basis sets definition 
Using basis sets as condensed representation of 
structural form is inspired by the Hippocampal 
formation. The entorhinal cortex contains grid cells, 
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which have hexagonal firing patterns that are similar 
to the pattern of the transition matrix eigenvectors of 
a hexagonal graph (Hafting et al., Stachenfeld et al.). 
Furthermore, these cells are active in any 
environment with translational and rotational invariant 
transition structure, even if these tasks or 
environments are not spatial (Constantinescu et al.). 
We therefore hypothesised that grid cells are the 
basis set for all environments with this particular 
structural form and chose our basis set for hexagonal 
graph as the most (8) informative eigenvectors of the 
transition matrix 
There are structural forms that inherently contain 
nodes that have different structural properties. Their 
fast identification can have beneficial effects on 
behaviour. For example, our graphs with underlying 
community structure contains nodes that connect two 
communities (connecting nodes). Identifying them is 
crucial for fast navigation on the graph. Thus, we 
chose as a basis set, vectors that assign each node 
to a community and vectors of connecting nodes 
assignment. Using this basis sets representations our 
model was able to infer the correct underlying 
structure.  
Inferring unobserved trajectories 
To test inference of unobserved links, the model 
learned the graph by sampling pairs of adjacent 
states while some of the links are never shown (red 
edges figure 1 lower, right panel). The model was still 
able to infer the correct structural form (figure 3, upper 
left panel). Further, the model had to choose between 
two states with the same number of observed links to 
the target state, the state that is closer to the target 
state on the complete graph. Indeed, our model is 
able to infer these unobserved links better than 
chance (Figure 3, lower left panel – here the model 
started with higher prior probability for hexagonal 
structure). 
 

 
 

Figure 3: Inference of unobserved links (Hexagonal 
graph. 30 participants in each group) 

 

People can use structural knowledge to 
infer unobserved trajectories 
Now we ask whether humans could also use prior 
knowledge of the underlying graph structure to infer 
the existence of transitions that were never observed. 
We performed graph-learning experiments where 

participants learned three large graphs (36 nodes 
with degree of 6, Figures 1). We tested whether 
participants can infer the underlying graph structure 
and apply this knowledge to a new graph with new 
stimuli. Participants were segregated into two groups. 
They performed the task during two successive days 
(Figure 1). During the first day, one group learned two 
graphs with hexagonal structure while the second 
group learned two graphs with an underlying 
community structure. On that day, the graphs were 
learnt by observing a sequence of pictures that are 
taken from a random walk on the graphs.  
We hypothesised that participants reach the second 
day with prior expectations over the underlying 
structural forms, as they associated the experienced 
graph statistics with our task. Participants who 
learned hexagonal graphs during the first day should 
expect hexagonal graph on the second day, while 
participants who previously learned graphs with 
underlying community structure should expect to 
learn again a graph with a community structure. We 
therefore asked whether participants can infer the 
underlying structural form during the first day and 
then use it as a prior knowledge during the second 
day. Notably, if they do, they will be able to infer the 
existence of transitions they have never observed (as 
in the model). Therefore, in this experiment, both 
groups of participants learnt hexagonal graph on the 
second day by observing pairs of adjacent pictures. 
Importantly, however, here the pairs were sampled 
randomly (i.e. neighbouring pairs were not sampled 
in succession) and many pairs were omitted.  That is, 
many transitions were never explicitly observed by 
the subjects (depicted in figure 1 – red lines). We 
aimed to test whether subjects could use structural 
knowledge from the first day to infer the existence of 
these unobserved transitions.  
To examine participants’ ability to infer the existence 
of a link that was never observed explicitly, 
participants had to indicate which of two pictures is 
closer to a target picture; no feedback was given for 
this type of questions (more than 200 questions for 
each participant). Participants had to choose 
between two pictures with the same number of 
observed links to the target picture, the picture that 
has the smaller number of links to the target picture 
on the full graph. Only participants who were able to 
complete ‘missing links’ using knowledge of the 
underlying graph structure could answer these 
questions correctly. Indeed, participants who had 
experienced the hexagonal structure on different 
graphs the previous day, perform significantly better 
than control participants who had experienced graphs 
with underlying community structure (Figure 3, 
middle: all questions, right: ‘missing links’ questions 
only). These results indicate that similar to our model, 
participants extract sophisticated structural 
knowledge of the problem that generalises across 
different sensory realisations. They are able to 
transfer knowledge from one day to the other, and 
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use this knowledge to guide their decisions and infer 
unobserved trajectories. 
Looking at figure 3, it can be seen that some 
participants performance is on chance level while 
some participants are very good at performing the 
task with p-value < 10^-10. We therefore concluded 
that while some participants have not transferred 
structural knowledge, the participants who succeed in 
doing so, do so consistently. 
 

Using structural knowledge to set 
advantageous policies.  
 
Not only can structural knowledge be used to infer 
unobserved transitions, it can also be used to direct 
advantageous policies. For example, while learning a 
graph with community structure, agents with no 
structural knowledge will spend large periods of time 
trapped in a single community. A simple policy of 
“prefer connecting nodes” overcomes this problem. In 
our model, the identity of these connecting nodes is 
easily recovered during the learning of the emission 
matrix (figure 4a: upper panel- structure inference, 
lower panel- connecting node inference).  
To check whether participants are able to infer the 
existence of community structure and use a prior over 
the structural forms to inform their behaviour, we 
constructed the second experiment. In this 
experiment, participants were also segregated into 
two groups. As before, one group learned two 
hexagonal graphs and the other group learned two 
graphs with community structure during the first day. 
However now, both groups learned from random walk 
and navigate on a community-structured graph during 
the second day (Figure 1). Participants that learned 
graphs with underlying community structure on the 
first day performed better on the second-day 
navigation task (Figure 4c – number of steps to the 
target is shorter, 𝐷𝑡=0, is the initial distance between 
starting picture and the target). Importantly, however, 
they also learned the associations between pictures 
faster. While learning the associations participants 
determined their own learning pace by choosing 
when to observe the next picture. Participants that 
expected a graph with underlying community 
structure spend less time on learning each pair of 
pictures than participants that expected Hexagonal 
graph (Figure 4b). One possibility is that, instead of 
learning the individual pairwise associations, subjects 
simply inferred the community structure and assigned 
each node to the current community.  
We further examined participants’ choices during 
navigation to show that participants with the correct 
prior over the structural form infer nodes type better 
than participants with the wrong structural prior. 
During the navigation task, participants had to choose 
between two pictures or skip and sample a new 
pictures pair. We examined participants’ choices 
during all trials in which they chose one of the pictures 
and one of them was a connecting node while the 

other was not. Participants who had the correct prior 
chose connecting nodes significantly more than 
participants who had the wrong prior (p< 0.01, Figure 
4d). More than that, they chose connecting node 
more frequently, even if this choice was the wrong 
choice (p< 0.01, it took them far away from their 
target, Figure 4d). These results imply that 
participants are able to infer connecting node identity 
and use this knowledge during task. Please note that 
we are comparing two groups of participants 
performing the same task. Participants with a wrong 
prior even sample the state space more as they 
navigate longer on the graph. Therefore, assigning 
higher values for connecting nodes without identifying 
their identity cannot account for this effect.  

 
 
Figure 4: Policy transfer: Learning graph with 
community structure. (20 participants in each group) 
 

Conclusions 
 

Inference and transfer of structural knowledge can be 
achieved by basis sets representations for structural 
knowledge. Using structural knowledge the model 
and participants are able to: (1) Infer the existence of 
unobserved links. (2) Infer important task states. (3) 
Exploit behavioural policy that is tailored to a 
particular structural form. 
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