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Abstract: 

Predicting the timing of events is fundamental for 
adaptive behaviour. An electrophysiological marker - 
(temporal) Mismatch Negativity (tMMN) - is often found 
following violations of expected temporal pattern of 
event sequences. A confounding factor in interpreting 
temporal mismatch paradigms is that violations of 
expected interval are accompanied by violations in 
feature or rhythmic pattern. Recently, Chang and 
colleagues (2017) disentangled duration and rhythm in a 
mismatch paradigm, presenting sequences of visual or 
auditory pairs with constant or pseudo-random inter-
pair-intervals. Multivariate pattern analysis of EEG data 
replicated tMMN for rhythmic patterns, and additionally 
found signatures of tMMN specifically for duration. 
Temporal generalisation analysis showed that 
signatures of duration prediction violation generalised 
across sensory modality. However, results were based 
on only 15 participants, and report accuracy of decoder 
performance, which is understood to not accurately 
represent differences. To address these issues, we re-
analysed the data, replicating evidence for predictions 
about auditory duration, and generalization across 
constant/pseudo-random presentation, though found no 
evidence that predictions generalized across modality. 
These results raise questions about the conclusions of 
the original study. Consequently, we will run a full 
replication of the study to resolve the precise nature of 
the electrophysiological correlates of temporal 
prediction. 
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Introduction 

The human brain presents the remarkable capacity to 
predict the timing of events in a sequence. This ability 
has been widely investigated and is reflected in an 
electrophysiological marker known as (temporal) 
Mismatch Negativity (tMMN) - elicited by violations of 
expectation (Garrido et al., 2009). Despite extensive 
investigation, the nature and neural underpinnings of 
tMMN are far from clear. Violations of the temporal 
properties of event sequences are studied in temporal 
oddball paradigms wherein an event is considered 
standard if it maintains the rhythmic structure of a 
sequence, and deviant if it violates it (Chen et al., 2010). 
However, understanding the precise nature of the 
violated prediction in tMMN is confounded by the fixed 
rhythmic structure of stimulus presentations, thus 
conflating predictions of interval duration with those 
related to rhythmic pattern. Recently, Chang, Seth and 
Roseboom (2017) demonstrated that these different 
contributions can be disentangled by presenting stimuli 
of different durations and modality within rhythmic (fixed 
ITIs - isochronous) or arrhythmic (pseudo-randomly 
sampled ITIs - anisochronous) structures. Combining a 
univariate ERP approach with multivariate pattern 
analysis and temporal generalization analysis (TGA – 
King & Dehaene, 2014), they showed that violation of 
duration predictions elicited a deviation in the EEG 
signal regardless of rhythmic structure, providing 
evidence for the coding of predictions related 
specifically to duration. Additionally, by training a 
classifier to distinguish standard and deviant trials in 
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one sensory modality and then testing it on another, 
they provided evidence for a supra-modal, modality-
general mechanism of duration prediction. In spite of 
these potentially exciting findings, the study was based 
on a sample of only 15 participants and reported only 
decoding accuracy in combination with the use of a 
support-vector machine (SVM) for the unbalanced 
design, which may have produced an overly optimistic 
estimate of the results. Here we will present a full 
reappraisal of these findings. 

Methods 

Procedure and Design 

Fifteen healthy students were recruited from the 
University of Sussex. The experiment was a temporal 
oddball paradigm in which durations were defined by 
two transient stimuli. The duration could be 150ms or 
400ms. Participants observed stimulus presentation 
passively. In one block of trials, the standard duration 
was 150ms (200 trials) and deviant 400ms (50 trials). In 
the other block of trials, the standard and deviant 
duration were switched. There were three experimental 
conditions: auditory isochronous (A-ISO), auditory 
anisochronous (A-ANISO), and visual anisochronous 
(V-ANISO). Auditory stimuli were 10ms pulses of 1500 
Hz pure tones. Visual stimuli were 10ms flashes of 
luminance-defined Gaussian blobs. The inter-trial-
interval (ITI, time between one pair and the next) was 
either fixed at 1750ms (isochronous) or drawn from two 
uniform random distributions between 1000-1500ms or 
2000-2500ms. 

EEG Acquisition and Preprocessing 

64 channel EEG data were recorded at 2048 Hz and 
preprocessed with the EEGLAB toolbox (version 
14.1.2.b - Delorme & Makeig, 2004) running on 
MATLAB (R2018a). Data were downsampled at 512 Hz 
and were separately high-pass filtered at 0.1 and low-
pass filtered at 45 Hz. Bad channels were automatically 
detected with the clean_rawdata() function and 
subsequently spherically interpolated. EEG data were 
then re-referenced to the common average of all 64 
electrodes. Eye  movements and blinks were corrected 
with independent component analysis (FastICA - 
Hyvarinen, 1999). As recommended by Winkler and 
colleagues (2015), ICA was fitted to a version of the 
dataset that was high-pass filtered at 1Hz to improve 
the decomposition. To ensure compatibility, the 1Hz 
dataset presented the same features of the “original” 
one in terms of both cropping and removed sensors. 
The ICA weights were then projected to the 0.1 Hz 
filtered dataset for further classification. Eye 
components were automatically classified and removed 
by means of ICLabel (Pion-Tonachini, Kreutz-Delgado, 
& Makeig, 2019). The 0.1 Hz dataset was then epoched 

in respect to the first presented stimulus of each pair 
(S1) between -100 and 850 ms and each epoch was 
baseline corrected (-100 to 0 ms). Bad epochs were 
automatically detected with a customised script. 

Multivariate Pattern Analysis (MVPA) 

All decoding analyses were run with the Amsterdam 
Decoding and Modeling toolbox version 1.07 (ADAM –
Fahrenfort et al., 2018) in MATLAB (R2018a) on a 
downsampled version of the preprocessed data (128 
Hz). To test whether standard and deviant stimuli 
showed different electrophysiological patterns in each 
condition, a backward decoding classification algorithm 
(LDA) was used. All 64 EEG channels were features, 
with Standard and Deviant labels within each condition 
as classes. The classifier was trained and tested on 
each datapoint (122 per epoch) using 10-fold cross 
validation. Classifier performance was averaged across 
all folds. Classifier performance was measured by the 
Area Under the ROC Curve (AUC). Due to the 
imbalance between standard and deviant trials (4:1 
ratio), deviant trials were oversampled by means of the 
ADASYN algorithm (He et al., 2008). In addition, within-
class balancing was ensured by means of 
undersampling.  

Decoding across conditions. To assess whether 
duration predictions in both isochronous and 
anisochronous conditions, and across different sensory 
modalities, shared common underlying neural 
information, we used the temporal generalization 
analysis (TGA; King & Dehaene, 2014). The core 
feature of this approach lies in its ability to generalize 
classifiers’ performance across time instead of training 
and testing on the same datapoint. The analysis 
followed the same 10-fold cross validation approach 
reported above, but in this case each classifier was 
trained on one condition and tested on another one 
(across rhythmicity: A-ISO vs A-ANISO and across 
modality: A-AISO vs V-AISO).   

Statistical analysis. Statistical significance at the 
group-level was assessed by t-testing against chance 
level (0.5 for AUC) and then applying cluster-based 
permutation to correct for multiple comparison (1000 
random permutations).  

Results 

The reported analysis is specifically focused on 
violations elicited by short-ISI stimuli (150 ms). In this 
context, a prediction violation of duration is represented 
by a stimulus occurring earlier than predicted 
(unexpected presence). Contrasts are thus based on 
the comparison of same physical stimuli but having 
different contextual meaning (standard vs deviant) 
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within sequences presented in the counterbalanced 
blocks. 

Decoding Within Conditions 

LDA was able to discriminate between standard and 
deviant EEG pattern with above chance performance in 
both the A-ISO for two clusters (time window: 229–526 
ms, p<.001; time window: 573– 636 ms, p<.005; peak 
AUC: 0.64) and A-ANISO conditions for one cluster 
(time window: 315-378 ms  p<.01, peak AUC: 0.59). 
However, no period of significantly above chance 
decoder performance was found for the V-ANISO 
condition. Results are depicted in Figure 1 above. 

 

Decoding Across Conditions 

Decoding across rhythmicity with TGA in the auditory 
modality highlighted the presence of shared neural 
information when processing prediction duration 
violations. More specifically, when training the classifier 
to distinguish standard and deviant EEG patterns for A-
ISO condition and then testing it on the A-ANISO 
condition we found a statistically significant on-diagonal 
cluster (p<.001, peak AUC: 0.59). In addition, when 
applying the reverse TGA (training on A-ANISO and 
testing on A-ISO) we also found a statistically significant 
on diagonal cluster (p<.001, peak AUC: 0.61). 
However, no significant cluster was detected when 
applying cross-decoding across sensory modality in the 
A-ANISO and V-ANISO conditions. Results are 
reported in Figure 2 below. 

Discussion and Conclusions 

Our re-analysis successfully replicated the well-known 
electrophysiological signatures of violations of rhythmic 
predictions, as well as the results reported by Chang et 
al. (2017) related specifically to predictions of duration - 
but only for the auditory, not visual modality. 
Additionally, again consistent with the original study, 
across-rhythmicity decoding using TGA highlighted the 
presence of similar neural information for violations of 
both rhythmic and arrhythmically presented stimuli. 
However, we found no evidence for the across-modality 
generalization of prediction violation reported in the 
paper. While supporting the existence of separate 
neurophysiological signatures for duration and rhythm 
in audition, these results, and the aforementioned 
limitations, call for further investigations to resolve 
whether electrophysiological responses to violations of 
duration predictions share any common components 
across sensory modality. 
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Figure 1: Average classification performance (AUC) for both the A-ISO (left panel) and A-ANISO (right panel) 
conditions. Thick lines reflect statistical significance (p<.05). Shaded areas represent +/- s.e.m. 
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Figure 2: TGA matrices showing standard vs deviant classification performance when training on A-ISO and 
testing on A-ANISO (left panel) and when training on A-ANISO and testing on A-ISO (right panel). 

 

 

  
 

 

 

 

 

1086


