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Abstract
Humans can accurately recognize natural scenes from
line drawings, consisting solely of contour-based shape
cues. Deep learning strategies for this complex task,
however, have thus far been applied directly to pho-
tographs, exploiting all the cues available in colour im-
ages at the pixel level. Here we report the results of
fine tuning off-the-shelf pre-trained Convolutional Neural
Networks (CNNs) to perform scene classification given
only contour information as input. To do so we exploit
the Iverson-Zucker logical/linear framework to obtain line
drawings from popular scene categorization databases,
including an artist’s scene database and MIT67. We
demonstrate a high level of performance despite the ab-
sence of colour, texture and shading information. We
also show that the inclusion of medial-axis based contour
salience weights leads to a further boost, adding useful
information that does not appear to be exploited when
CNNs are trained to use contours alone.
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Introduction
In vision science perceptual organization is thought to be ef-
fected by a set of heuristic grouping rules originating from
Gestalt psychology (Koffka, 1922). Such rules posit that vi-
sual elements ought to be grouped together if they are, for
instance, similar in appearance, in close proximity, or if they
are symmetric or parallel to each other. Developed on an ad-
hoc, heuristic basis originally, these rules have been validated
empirically, even though their precise neural mechanisms re-
main elusive. Grouping cues, such as those based on sym-
metry, are thought to aid in high-level visual tasks such as
object detection, because symmetric contours are more likely
to be caused by the projection of a symmetric object than to
occur accidentally. In the categorization of complex real-world
scenes by human observers, local contour symmetry does in-
deed provide a perceptual advantage (Wilder et al., 2019), but
the connection to the recognition of individual objects is not as
straightforward as it may appear.

In computer vision, symmetry, proximity, good continuation,
contour closure and other cues have been used for image seg-
mentation, curve inference, object recognition, object manip-
ulation, and other tasks (Marr & Nishihara, 1978; Biederman,
1987; Elder & Zucker, 1996; Sarkar & Boyer, 1999).

However, perceptually motivated salience measures to fa-
cilitate scene categorization have received little attention thus
far. This may be a result of the ability of CNN-based systems
to accomplish scene categorization on challenging databases,
in the presence of sufficient training data, directly from pixel
intensity and colour in photographs (Sharif Razavian, Az-
izpour, Sullivan, & Carlsson, 2014; Szegedy, Vanhoucke, Ioffe,
Shlens, & Wojna, 2016; Zhou, Lapedriza, Khosla, Oliva, &
Torralba, 2018). CNNs begin by extracting simple features,
including oriented edges, which are then successively com-
bined into more and more complex features in a succession of
convolution, nonlinear activation and pooling operations. The
final levels of CNNs are typically fully connected, which en-
ables learning of object or scene categories (Song, Lichten-
berg, & Xiao, 2015; Bai, 2017; Girshick, Donahue, Darrell, &
Malik, 2014; Ren, He, Girshick, & Sun, 2015). Unfortunately,
present CNN architectures do not allow for properties of object
shape to be represented explicitly. Human observers, in con-
trast, recognize an object’s shape as an inextricable aspect of
its properties, along with its category or identity (Kellman &
Shipley, 1991).

Comparisons between CNNs and human and monkey neu-
rophysiology appear to indicate that CNNs replicate the entire
visual hierarchy (Kriegeskorte, 2015; Kar, Kubilius, Schmidt,
Issa, & DiCarlo, 2019; Güçlü & van Gerven, 2015; Cadieu
et al., 2014). Does this mean that the problem of perceptual
organization is now irrelevant for machine vision? We argue
that this is not the case, and show that CNN-based scene
categorization systems, just like human observers, can ben-
efit from explicitly computed contour measures derived from
Gestalt grouping cues. To do so we use an average outward
flux formulation to compute the medial axis (Dimitrov, Damon,
& Siddiqi, 2003) and then use it to directly capture salience
measures related to local contour separation and local con-
tour symmetry. Figure 1 presents an illustrative example of a
photograph from an artist scenes database, along with two of
our medial axis based contour salience maps.

Medial Axis Based Contour Saliency
Motivated by the considerations above, we recently introduced
novel measures to capture local separation, ribbon symmetry
and taper from line drawings of natural scenes (Rezanejad et
al., in press), which we now review. Owing to the continuous
mapping between the medial axis and scene contours, the
scores obtained using these measures can then be mapped
to scene contours. We let p be a parameter that runs along a

1087

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Scene Line drawing Salience score on the medial axis Salience score on the line drawing

Figure 1: (Best viewed by zooming in on the PDF.) An illustration of our approach on an office scene example from the Artist
Scenes Database. On the right we present a hot colormap visualization of our salience measures on the medial axis and the
line drawing, respectively. Here black represents high salience, red intermediate salience, and yellow low salience.

medial axis segment, (x(p),y(p)) be the coordinates of points
along that segment, and R(p) be the medial axis radius at
each point. We consider the interval p ∈ [α,β] for a particular
medial segment.

Separation Salience
With R(p)> 1 in pixel units (we assume that two distinct scene
contours do not touch) we use the following contour separa-
tion based salience measure:

SSeparation = 1−
(∫

β

α

1
R(p)

d p
)
/(β−α). (1)

This quantity falls in the interval [0,1], increasing with greater
spatial separation between the two contours. Scene contours
that exhibit further (local) separation are more salient by this
measure.

Ribbon Symmetry Salience
When two scene contours are close to being parallel locally,
R(p) will vary slowly along the medial segment. This moti-
vates the following ribbon symmetry salience measure:

SRibbon =

∫
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. (2)

This measure also falls in the interval [0,1] and it increases
as the scene contours on either side become more parallel,
such as the two sides of a ribbon.

Taper Symmetry Salience
A notion that is closely related to that of ribbon symmetry is ta-
per symmetry. Two scene contours are taper symmetric when
the medial axis between them has a radius function that is
changing at a constant rate, such as the edges of two paral-
lel contours in 3D when viewed in perspective projection. To
capture this notion of symmetry we use the following taper
symmetry salience measure:

STaper =

∫
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This quantity also falls in the interval [0,1] and it increases as
the scene contours on either side become more taper sym-
metric, as in the sides of a railway track.

Experiments & Results
Artist Scenes Database
Color photographs of six categories of natural scenes were
downloaded from the internet, and those rated as the best ex-
emplars of their respective categories by workers on Amazon
Mechanical Turk were selected ((Torralbo et al., 2013)). Line
drawings of these photographs were generated by trained
artists at the Lotus Hill Research Institute (Walther, Chai, Cad-
digan, Beck, & Fei-Fei, 2011). The resulting database had
475 line drawings across 6 categories: beaches, mountains,
forests, highway scenes, city scenes and office scenes.

Machine Generated Logical/Linear Line Drawings
Given the limited number of scene categories in the Artist
Scenes database, we worked to extend our analysis on
a much larger scene database of photographs - MIT67
(Quattoni & Torralba, 2009) (6700 images, 67 categories).
To produce line drawings from this much larger database we
modified the output of the logical/linear edge detector (Iverson
& Zucker, 1995), using their publicly available open source
implementation. This approach is devised to recover image
curves while preserving singularities and junctions. We briefly
review the three kinds of image curves modeled in (Iverson &
Zucker, 1995).

Consider an image I : R2 → R+, with P = [α,β] and let
C :p ∈ P→ R2 represent a smooth curve parameterized by
arc length. The normal cross section Np(t) at the curve point
C(p) is given by:

Np(t) = I(C(p)+ tN(p))), p ∈ P, t ∈ R. (4)

Using local structural conditions in the directions tangential
and normal to the curve, the following three image curve cat-
egories are suggested in (Iverson & Zucker, 1995):

1. C is an Edge iff C is an image curve such that the following
condition holds for all p ∈ P:

lim
t→0−

Np(t)> lim
t→0+

Np(t)

2. C is a Positive Constrast Line iff C is an image curve such
that the following condition holds for all p ∈ P:

lim
t→0−

N′p(t)> 0 and lim
t→0+

N′p(t)< 0
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3. C is a Negative Constrast Line iff C is an image curve such
that the following condition holds for all p ∈ P:

lim
t→0−

N′p(t)< 0 and lim
t→0+

N′p(t)> 0

In (Iverson & Zucker, 1995) operators are designed to re-
spond when any of the above conditions are met locally in
an image, and if so, either an edge, or a line is reported. In
our experiments we focused on the case of edge points; from
the output edge map and its associated edge strength and
edge directions, we produced a binarized version. Each bina-
rized edge map was processed and traced to obtain contour
fragments having a width of 1 pixel. Figure 2 presents a com-
parison of an artist-generated line drawing for an office scene
from the Artist Scenes database, along with the logical/linear
(machine generated) version.

Artist Line Drawing Machine Generated Line Drawing

Figure 2: (Best viewed by zooming in on the PDF.) An artist’s
line drawing of an office scene, and the machine generated
version, obtained using logical/linear operators (Iverson &
Zucker, 1995).

We have confirmed that on the artist’s line drawing
database 82% of the machine generated contour pixels are
in common with the artist’s line drawings.

Scene Categorization with Salience Weighted
Contours
We report the results of scene categorization using both con-
tours and contours weighted with our perceptual salience
measures. We accomplish this by feeding different features
in the 3 channels (normally used for red, green and blue) of a
pre-trained network, as illustrated in Figure 3. We have used
VGG16 (pre-trained on Imagenet) and VGG16-H (pre-trained
on both Imagenet and Places365 (Zhou et al., 2018)). In all
the experiment,s the last two fully-connected layers of the pre-
trained networks were fine-tuned using our feature-coded in-
puts, i.e., training was done on the feature maps provided by
them.

The results for the Artist Scenes dataset and for MIT67,
are shown in Table 1. It is apparent that with these salience
weighted contour channels added, there is a consistent boost
to the results obtained by using contours alone. In all cases
the biggest performance boost comes from a combination of
contours, ribbon or taper symmetry salience, and separation
salience. This is likely because taper salience is conceptually
very close to ribbon salience, while local separation salience

R

G

B

conv
pool conv

pool conv pool conv pool conv pool

FC FC

Softmax

Figure 3: (Best viewed by zooming in on the PDF.) A
schematic view of the VGG16 architecture with salience
weighted contours used as the 3 input channels (see Table
1 for the specific sets of input channels.

Channels
Artist MIT67

VGG16 VGG16-H VGG16 VGG16-H
Photos 98.20 99.62 64.87 79.49
CCC 91.23 92.50 46.92 60.73
CCR 93.46 94.16 48.55 61.10
CCT 93.10 95.06 49.84 63.32
CCS 94.63 96.56 49.61 62.54
CRT 94.85 96.61 51.32 62.96
CRS 95.42 98.40 53.21 64.25
CTS 96.82 97.93 54.17 65.79
RTS 95.74 95.96 52.52 63.48

Table 1: Top 1 level performance in a 3-channel configuration,
on the Artist Scenes and MIT67 databases, with fine-tuning.
TOP ROW: Results of the traditional R,G,B input configuration
where the original photos are used. OTHER ROWS: Combina-
tions of intact scene contours, and scene contours weighted
by our salience measures, where each letter stands for a spe-
cific input channel. C = contours, R = ribbon symmetry, T =
taper symmetry and S = separation.

provides a more distinct and complementary perceptual cue
for grouping.

For MIT67 the performance of 79.49% on photographs is
consistent with that reported in (Zhou et al., 2018). Remark-
ably, 75% of this level of performance (a level of 60.73%) is
obtained using only logical/linear line drawings. The over-
all performance goes up to 65.79% (or 82.8% of the perfor-
mance on photographs) when using contours weighted by
ribbon and separation salience. For MIT67, we have also
compared the performance (fine-tuned) Hybrid1365 VGG on
photographs (79.49% top-1) with photographs with contours,
ribbon, and separation salience weighted contours overlayed
(82.05% top-1). Thus, perceptually weighted contour features
can boost overall performance as well.

Conclusion
Our experiments show that scene contours weighted by per-
ceptually motivated contour salience measures can boost
CNN-based scene categorization accuracy, despite the ab-
sence of colour, texture and shading cues. Our work indicates
that measures of contour grouping, which are simply functions
of the contours themselves, are beneficial for scene catego-
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rization by computers, leading to recognition performance that
is over 80% of the best reported results on the underlying pho-
tographs. Whereas this shape information is reflected in the
images themselves, it does not appear to be directly learned
by present state-of-the-art CNN-based scene recognition sys-
tems. Adding shape information computed on the medial axis
outside of the CNNs improves scene categorization above the
current state of the art.
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