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Abstract
Learning the likelihood of aversive events is achieved ei-
ther by gradual learning or via inference of hidden states.
We previously linked the tendency towards state switch-
ing to trait anxiety but the effect of environmental noise
has not been investigated. In the present study we em-
ploy a Pavlovian probabilistic learning paradigm to test
how environmental noise promotes either state switching
or gradual lerning. Participants completed three sessions
varying in shock contingency jumps (60/40%, 75/25% or
90/10%). As a signature of state-switching we analyzed
steepness of post-reversal switch. In support of our hy-
pothesis we found that steepest switches were present in
the 90/10 environment. This effect was found to be driven
by high trait anxiety. Trait anxiety also positively cor-
related with difference between acquisition and extinc-
tion. Next, we developed a state switching model and per-
formed model comparison using cross-validation. Anal-
ysis of model parameters found positive correlation be-
tween trait anxiety and tendency to create more states.
In summary, our behavioural and modelling result show
that less noisy environments encourage state switching,
and that anxious individual have an increased tendency
to represent the environment as multiple states. This re-
sult highlights trait anxiety as vulnerability in successful
extinction treatment.
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Introduction

Learning Strategies

Accurately predicting future threat is a key survival mecha-
nism. In noisy environments an agent can either follow a
gradual learning strategy (e.g. reinforcement learning; RL)
or discover an underlying task structure and represent it as
state space (structure learning). Gradual learning ensures
that when faced with a large violation of expectation the agent
does not change its belief too drastically which would lead to
large errors in prediction. To accelerate adaptive behaviour
learning rate can be increased when large prediction errors
are generated (Pearce & Hall, 1980). This makes RL a suit-
able strategy when exploring a new environment. However,

over longer periods of time gradual updating may become in-
effective and computationally wasteful. As an alternative, an
agent might learn that there is an underlying structure in the
environment (e.g. shock reinforcement rate switches every 20
trials) which, when correctly learned, decreases the amount
of energy used and increases prediction accuracy. This has
been referred to as structure learning (Gershman, Blei, & Niv,
2010).

Hidden states are often discovered as a consequence
of gradually sampling the environment, however, the exact
mechanism of state discovery is not known. (Gershman,
Jones, Norman, Monfils, & Niv, 2013) proposed that consis-
tent large prediction errors will lead to the creation of a new
state. An agent in a novel environment will initially employ
a reinforcement learning strategy but when a consistent struc-
ture is discovered it will lead to representation of different clus-
ters of features as states (Redish, Jensen, Johnson, & Kurth-
Nelson, 2007). An example of such learning is the case of
context where the agent learns that there is one time period
in which shocks are frequent and another one in which they
are infrequent. Once this becomes known learning essentially
becomes a state classification process.

Aversive Learning and Trait Anxiety

In aversive learning, phases of high shock frequency (acqui-
sition) and subsequent passages of low frequency of shock
rate (extinction) have been reported to lead to asymmetric
learning. In a recent work we showed that while acquisition
of aversive associations is fast and lasting, extinction is char-
acterized by slower and incomplete learning. Trait anxiety has
previously been associated with difficulty to inhibit fear (Kindt
& Soeter, 2014) and increased physiological and neural reac-
tivity to fearful stimuli (Indovina, Robbins, Nez-Elizalde, Dunn,
& Bishop, 2011). During aversive learning, this leads to lack
of fear extinction. Anxiety has also been associated with in-
creased likelihood to relapse post extinction (Lissek et al.,
2005). In our recent data sets we showed that high anxious
individuals have a tendency to represent the learning environ-
ment as multiple distinct states rather than to learn gradually.

Hypotheses

In this paper we investigate whether the magnitude of contin-
gency changes influences the learning strategy employed by
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participants and whether this is further modulated by trait anx-
iety. We hypothesize that state highly noisy environments will
encourage gradual learning while environments low in noise
and high in contingency difference will preferentially lead to
multi-state representation of the environment. Further, we
hypothesise that anxious individuals will have increased ten-
dency to represent the environment as multiple states which
could be a mechanism leading to higher rates of relapse.

Methods

Task and Design

Thirty-three (15 female, µage = 25.4,σ = 4.5) participants
completed three sessions of probabilistic aversive learning
task while were recorded their shock expectancy ratings. On
each trial a cue was presented and either followed by a shock
or shock omission. Before the outcome was delivered partic-
ipants were asked to submit an expectancy rating indicating
how likely do they think that a shock will follow. In each ses-
sion there were three cues, two stable and one reversal cue.
One of the stable cues was associated with high probability of
shock (”harmful cue”) whilst the other had a low probability of
being followed by a shock (”safe cue”). The ”reversal cue” was
irregularly (i.e. every µ = 35,σ = 5 trials) switching between
blocks of high and low probability of shock. In each session
the high and low levels varied as follows: 40/60%, 25/75%
10/90%, where the first number represents shock probability
in the low probability state and the second in the high state.
The design is shown in Figure 1. Sessions were presented in
pseudo-random order across participants.
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Figure 1: Task Design consisted of three sessions with rein-
forcement contingencies set a t 40/60% [session A], 25/75%
[session B], 10/90% [session C]

Behavioural Measures

Shock Expectancy Ratings Shock expectancy ratings
were collected on every trial using a continuous (0% to 100%).

Post-reversal Switch Point and Switch Steepness To es-
timate the steepest point of learning post reversal for each in-
dividual flip in contingencies, ten pre- and ten post-reversal tri-
als were extracted and their mean subtracted from each data
point. A cumulative sum was then calculated. Its extreme was
then taken as the steepest learning point (Page, 1954) which
we call ”switch point” as it represents the point of steepest
learning. Once the switch point was identified five pre and
post trials were extracted and a sigmoidal function fitted to
data segment. The steepness of the function was then used
in the behavioural analysis as ”switch steepness”.

Computational Models

All models were fitted by minimising the negative log likelihood
using the BADS algorithm (Acerbi & Ma, 2017). To dissociate
between gradual learning and state switching we specified
three learning models: Rescorla-Wagner (RW), Pearce-Hall
(PH) and beta state switcher.

Rescorla-Wagner
A standard version of the RW algorithm was used. A proba-
bility P is updated on each trial t by the difference between
current shock expectancy Pt and received outcome Ot (shock
or noshock), weighted by the learning rate α.

Pt+1 = Pt +α(Ot −Pt) (1)

Pearce-Hall
The PH model extends the RW by introducing a dynamic
learning rate which is contingent on the magnitude of recent
errors, a quantity known as associability. Consequently, learn-
ing is faster when larger errors are generated. PH uses the
same equation as RW (Eq. 1) to update probability. Addi-
tionally, the learning rate for each trial is a combination the
current associability ηt scaled by κ (Eq. 3). Associability a
combination of the most recent unsigned prediction error and
a previous associability value weighted by π (Eq. 2). i is an
index for the two outcomes.

ηt = (1−πi)η(t−1)+πi|Ot −Pt | (2)

αt = κηt (3)

Beta State Learner
To capture cases where participants represent the environ-
ment as multiple states we developed a novel model based on
the leaky beta model recently used by (Wise, Michely, Dayan,
& Dolan, in submission). The value predicted by the agent
on each trial is the mean of the beta distribution given the
parameters αs,t and βs,t . The current expectancy and state
uncertainty estimates are given mean and standard deviation
by the beta distribution (Eqs. 4 and 5)
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µs =
α

α+β
(4) σ

2
s =

αβ

(α+β)2(α+β+1)
(5)

Updating occurs by adding 1 if αs,t if shock has occurred or
to βs,t if shock was omitted. To account for differential learn-
ing from shock and no-shock outcomes, an additional con-
stant is added for each outcome type. I define this constant
as τ+ ∈ [1, 1] for shock and τ− ∈ [1, 1] for no-shock. These
can be loosely interpreted as attention weights and they pro-
vide the model with the ability to dissociate between shock
and no-shock updating. Due to the nature of beta distribution
the more outcomes the agent has experienced, the more cer-
tain it is about the probability of an outcome on the next trial.
In a changing and noisy environment, this model with no free
parameters converges to the mean. To make the model sen-
sitive to recent experience a decay parameter λ ∈ [0, 1] was
introduced. Equations 6 and 7 show the full updating scheme.

βs,t+1 =

{
λβs,t ,

λ(βs,t +1+ τ−),

(6)

αs,t+1 =

{
λ(αs,t +1+ τ+), if shock

λαs,t , if no-shock

(7)

The model also keeps track of current level of surprise I,
similarly to PH (Eq. 8) αsurp corresponds to surprise learning
rate and λsurp corresponds to surprise decay.

It = It−1 +αsurp(Ot −Pt)−λsurpIt−1 (8)

Finally, after each outcome is delivered the agent decides
whether to stay in the current state or whether to create a new
state / switch to an existing state by the decision rule in Eq. 9.

It > σs,t ∗η∗max(S) (9)

where σs,t is the uncertainty of the current state, η is an in-
dividual threshold for switching/creating states and S is the
existing number of states.

If the level of surprise exceeded the threshold in Eq. 9 and
there is a suitable state to switch to then a switch is performed.
This is done by adding surprise (It ) to the current shock ex-
pectancy the current state (Pscurrent ), calculating the expected
next value P̂ and testing whether it lies in any state’s expected
range ησSs,t . If no candidate state matched a new state is cre-
ated using the the current state expected value, and initialized
with σSnew = 0.29 which is the standard deviation of the beta
distribution with parameters α = 1,β = 1.

Results

Mean Ratings

Participants were able to on average learn the underlying con-
tingencies. While in the safe and harmful cues the mean rat-
ings were relatively accurate, there was a slight overall over-
prediction in the reversal cue (see Figure 2). Splitting the re-
versal cue into acquisition and extinction, it was apparent that

this was driven by lack of extinction in all three sessions. In-
terestingly, there was no difference between mean probabil-
ities in extinction even between the most extreme conditions
(40/60% and 90/10%).

Figure 2: Mean Probabilities by cue (left) and phase (right

Investigating the role of trait anxiety (TA), the difference
between acquisition and extinction positively correlated with
TA r(32) = .439, p = 0.12, supporting our previous finding
that high TA individuals are better at dissociating between the
phases. This effect was strongest in the 90/10 condition and
weakest in the 60/40 condition.

Figure 3: Switch steepness left plot shows switch steepness
by visit, right plot shows that the effect is driven by high trait
anxiety group.

Switch Steepness

Switch steepness was significantly higher in the 90/10 con-
dition than in any of the other two. Importantly, there was
no difference between 60/40 and 75/25 suggesting that state
switching only starts occuring at contingency differences big-
ger than 50%.

Including anxiety, increase in switch steepness in the 90/10
condition was driven by the high TA group. Trait anxiety sig-
nificantly correlated with switch steepness overall, r(32) =
0.447, p = 0.01, post-hoc test revealing that this was driven
by the 90/10 condition, r(32) = 0.494, pcorr = 0.012 (Figure
3).
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Modelling Results

Model Comparison Model comparsion found that the beta
state learner fitted the data best in the 60/40 and the 90/10
condition while in the 75/25 condition the Pearce-Hall fitted
best. These results suggest that state learning occurs in the
90/10 condition but not as often in the 75/25 condition. The
BSL also fitted well in the 60/40 condition as it captures RW-
like gradual learning in one state.

Figure 4: Model Comparison data were fitted to initial 60-
80% data points and model used to predict the remainder.
The mean absolute error corresponds to average sum of least
squares errors over twenty runs. Numbers above bars repre-
sent number of participants best fitted by the given model.

Winning Model Parameters Analysis of the parameters of
the winning model found a significant correlation between
number of states estimated for each participants and the be-
havioural measure of switch steepness r(32) = 0.47, p =
0.006. Furthermore, there was a negative correlation in the
90/10 condition between the η parameter and trait anxiety,
r(32) = −0.4, p = 0.032. This shows that trait anxiety is as-
sociated with lower threshold for state switch/state creation.

Discussion
In a behavioural and computational analysis of human aver-
sive learning we found that less noisy environment with
high contingency difference lead to steeper switches between
them. There was no progressive increase in switch steepness
from high though mid to low noise conditions, which suggests
that this is not due to mere contingency difference but that
there is something fundamentally different in the 90/10 condi-
tion. We propose that this is due to state rather than gradual
learning in the 90/10 condition. Our modelling results show
that the state switching strategy dominates in the 90/10 condi-
tion, further supporting the notion that low noise environment
encourages state rather than gradual learning.

In relation to anxiety, our data show that high trait anxious
individuals can better distinguish between acquisition and ex-
tinction and that it is the high anxiety group that drives the
tendency for state learning in the 90/10 condition, as shown
by group ANOVA and significant correlation between switch
steepness and trait anxiety. Furthermore, the critical param-
eter of the beta state learner η that controls the tendency to

switch or create states correlated negatively with trait anxiety,
providing i) further evidence for state learning in high TA and
b) proposing a mechanism driving the effect. In summary, our
data show that low noise environments lead to state learn-
ing and that high trait anxious individuals have increased ten-
dency for multi-state represetnation of the world. This finding
has important implication for anxiety disorders, proposing a
potential mechanism for increased tendency for fear relapse
in anxiety.
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