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Abstract
In this study we define contingency representations, a
representational schema for delay tasks in which neu-
ral states encode prospective choice points, and demon-
strate how such a representation unifies seemingly con-
tradicting sensory-, action- and rule-based representa-
tions reported for prefrontal cortex neurons in different
delay tasks. Further, we describe a novel experimental
paradigm, the conditional delayed logic (CDL) task, in
which we investigate competing theories of representa-
tional structures as they are utilized to perform varied
working memory tasks. We trained a recurrent neural
network to perform the CDL task, identifying a contin-
gency representation subspace and testing its functional
and mechanistic properties. Human subjects tested on
the CDL task demonstrated behavior consistent with the
contingency-based representational schema and incon-
sistent with many leading models of working memory.
Contingency representations, in addition to clarifying
neuronal delay tuning, provide a novel hypothesis for
mixed selectivity as well as dynamic tuning observed dur-
ing many working memory tasks. Lastly, we present a set
of falsifiable predictions and analyses for neural data suf-
ficient to differentiate contingency representations from
alternative representational theories.
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Introduction
The observation that neurons in the prefrontal cortex (PFC)
retain a stimulus-selective persistent memory trace forms
the backbone of working memory research in neuroscience
(Funahashi, Bruce, & Goldman-Rakic, 1989). Since this dis-
covery, however, the narrative of what it is PFC neurons are
tuned to has has been complicated by multiple studies indi-
cating that neurons in the PFC could be selectively tuned for
future actions, expected upcoming stimuli, and task set/rule,
in addition to ”retrospective” tuning to past sensory informa-
tion. The traditional explanations for these results have been
either (a) that the PFC is multi-faceted and different subpop-
ulations participate in different varieties of persistent encod-
ing, or (b) that depending on the context, PFC neurons can
be tuned to different task features. In this study we will show

that a single representational schema, the contingency repre-
sentation, can actually explain these disparate findings, with
a single population encoding all relevant information and no
switching in single-unit tuning.

The contingency representation is defined by a set of pos-
sible future actions. States in which an expected future stimuli
will require the same response will be grouped together, while
states with different expected response contingencies will be
separated. By designing the conditional delayed logic (CDL)
task, to cleanly separate sensory information, rule informa-
tion, action information and contingency information we can
identify the true underlying representational structure. Then
through mapping subtasks of the CDL paradigm into subsets
that match previous experimental paradigms we can demon-
strate how a contingency representation gives rise to experi-
mental observations mentioned above.

Conditional Delayed Logic Task

In order to illustrate the properties of different representations,
we focus on a family of binary delayed logic tasks, for which
the object is to apply some classification to two binary stimuli
separated by a delay. For example, the OR task asks a sub-
ject to separate cases in which either stimuli is ”1”, from cases
in which they are both ”0”. In all there are 16 possible separa-
tions, however, we will focus on 10 eliminating the two tasks in
which the response is constant independent of stimuli, always
respond ”0” or ”1”, and the four cases in which the specific
order of the observed stimuli matters. The full set of remain-
ing tasks with their stimuli-output mappings are described in
table 1. While the binary delayed logic task family will be the
primary focus of this study, all theory expands to a much more
general set of cases in which optimal action is contingent on
future expected stimuli.

Importantly the CDL task family contains functional analogs
to many well studied paradigms. The MEM task paral-
lels the computation necessary for the Oculomotor Delayed-
Response (ODR) Task (Funahashi et al., 1989), the XNOR
and XOR task represents the Delayed Match to Sample Task
and Match to non-Sample, respectively (Skinner, 1950), and
the REPORT and Anti-REPORT mirror arbitrary stimulus-
action response paradigms (Rainer, Rao, & Miller, 1999). By
training a single network to do all of the above tasks we will
be able to investigate how the same representation could sub-
serve all these apparently different paradigms.
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Table 1: Conditional Delayed Logic Subtasks

Rule 0,0 0,1 1,0 1,1

XOR 0 1 1 0
XNOR 1 0 0 1

OR 0 1 1 1
NOR 1 0 0 0
AND 0 0 0 1

NAND 1 1 1 0
MEM 0 0 1 1

Anti MEM 1 1 0 0
REPORT 0 1 0 1

Anti REPORT 1 0 1 0

Contingency Representations
In contrast to sensory or action representations, contingency
representations are defined by a set of possible future actions.
For example, in the AND task, if cue A is ”1” then the contin-
gency representation would uniquely identify the responses to
either possible value of cue B. In this case if cue B is ”0” the
correct response would be ”0” and if cue B is ”1” the correct
response would be ”1”. We would therefore say this is a [0,1]
cue B contingency representation (Fig. 1). In this paper we
will refer to cue B contingency as merely contingency for con-
venience.

Computing Through Contingency
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Contingency  ->  [0,1]

Figure 1: Retrospective Sensory, Prospective Action and Con-
tingency Representations

The contingency representation is a fundamentally compo-
sitional solution to the CDL problem. Instead of computing
the response as 10 separate functions of the two stimuli, us-
ing 4 intermediate products, [0,0], [0,1], [1,0], and [1,1] con-
tingency states, every cue B can be resolve into its correct
response. Contingency representations are then composi-
tional in-between conditions in that different tasks will re-use
the same contingency representations and compositional in-

between stages of the task as a first function transforms the
cue A and rule data into a correct contingency state and then
a second function can be applied independent of how the sys-
tem reached that state.

It is important to note that it is possible for a subject to com-
plete the task with perfect accuracy without ever learning or
utilizing a contingency-based representation of the CDL task.
In fact the traditional sensory focused models would be suffi-
cient under the right circumstances (Fig. 1).

Results

Human Behavior

To investigate the feasibility of contingency representations as
an explanation for human behavior, we had human partici-
pants perform the CDL task. Subjects we’re first shown a rule
cue, describing the trial type which remained on the screen
throughout the task. Following the rule cue a transient stimu-
lus, cue A, depicting either a ”0” or a ”1” appeared on screen.
After 200 ms the cue A stimulus disappeared. Following a
1000 ms delay, a second ”0”/”1” stimulus, cue B, appeared on
screen. Subjects could respond only after cue B appeared.
The subjects were instructed to respond as quickly and as
accurately as possible and there was a time-out penalty for
responses over 2 s.

One important prediction of sensory representations is that
the same classifier solves the problem of identifying the cor-
rect output independent of the cue A identify. In the contin-
gency model, however, since different cue A by task combina-
tions lead to different contingency states this is no longer the
case. For this reason we would expect that performance on
a task should be independent of cue A if the sensory repre-
sentation is utilized, but not necessarily so for the contingency
representation.

We found that this is the case. For trials in which the rule
was OR, cue A = 0 trials had substantially longer response
times (RTs) than cue A = 1 trials. In contrast for trials in which
the rule was AND, cue A = 0 trials had substantially shorter
RTs than cue A = 1 trials.

In a more detailed analysis we found this to be explained
by the fact that [0,0] and [1,1] contingencies had shorter RTs
than [0,1] or [1,0] contingency trials. A linear analysis of RTs
revealed that significantly more variance was explainable by
contingency than by rule, cue, or response.

Identifying Contingency Representations in an RNN
Model

Further to investigate the mechanistic logic of a contingency
representation implemented in a functional circuit we trained
a task-optimized RNN on the CDL task and analyzed the state
space trajectories of the resulting network.

Using a linear subspace identification method, we identified
a plane in which we could separate trials by contingency. This
demonstrated that the representation in our RNN was suffi-
cient to perform contingency operations.
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We used unsupervised dimensionality reduction (UMAP)
and clustering methods (agglomerative clustering) to identify
that contingency explained the global structure of the data bet-
ter than alternative models both in euclidean and topological
space. Using Adjusted Rand Score we identified that clusters
were better explained by contingency, than either stimulus, ac-
tion or rule.

Finally, we tested the functional relevance of contingency
representations through a perturbation experiment, in which
we slightly perturbed the state of the network just prior to cue
B onset. We found that perturbations in contingency subspace
caused significantly greater deficits in performance than did
perturbations of equal magnitude orthogonal to the contin-
gency subspace.

Identifying Sensory, Action and Rule
Representations as sub-parts of Contingency

A key motivating features of this study, is the goal of explaining
and unifying different PFC delay representations identified in
the literature. By taking limited subsets of the CDL tasks, one
can show how contingency representations can be made to
appear as different forms of tuning.

For example if one were to only investigate the MEM condi-
tion of the CDL task, the contingency under cue A = 0 would
be [0,0], while the cue A = 1 contingencies would be [1,1]. This
separates into two differentiable persistent states in the con-
tingency representation. For this reason an analysis of unit
tuning would identify any contingency tuned cells as stimulus
tuned. Sensory tuning will be found for an analysis of any sin-
gle CDL task in which the contingency state depends on cue
A.

Rule tuning can be made to appear as a function of the
task as well in cases in which two or more CDL subtasks
are analyzed together. In a task with just the NOR and AND
conditions of the CDL task, since those tasks cover three
contingency states [0,0],[0,1] and [1,0] units would appear to
be tuned to both rule and cue. These hypothetical results
match those reported in the rule tuning and task set literatures
(Wallis, Anderson, & Miller, 2001). This is true for any pair of
tasks in which there are three contingency states utilized.

To generate prospective action/response tuning, we can
design a task with only the MEM and anti-MEM condition.
Since the outputs after the contingency representations will
always be ”1” on contingency [1,1] trials, and ”0” on contin-
gency [0,0] trials delay activity will appear tuned to a prepared
action(Rainer et al., 1999). This is true for any pair of tasks
that both only move to [0,0] and [1,1] contingency representa-
tions after cue A.

By building subsets of the CDL task with different correla-
tions between contingency states, cues, and rules, data with
rule tuning, cue tuning, mixed tuning or neither tuning can
be generated. Despite this when examined over the entire
CDL task, which was designed to decorrelate cues, rules, ac-
tions and contingencies, the single contingency representa-
tion emerges.

Mixed Selectivity
One recent phenomena of significant computational interest
is the propensity of neurons in PFC to encode a combination
of multiple task features, or to be of nonlinear mixed selectiv-
ity. While nonlinear mixed selectivity does provide computa-
tional advantages (Rigotti et al., 2013), one alternative expla-
nation could be that neurons code non-linear interactions of
features as part of their network solution. Due to the fact that
contingency representations are a cue × rule interaction, the
units appear to be partially tuned to many different features
of the task. Despite this fact many neurons are purely contin-
gency selective, and only appear mixed because of the prior
assumption that they are encoding sensory, rule, or motor fea-
tures.

Dynamic Working Memory
Recently, even the persistent stable nature of working mem-
ory has begun to be questioned. Many researchers have be-
gun to report dynamic encoding of stimuli between the cue
epoch and delay (Cavanagh, Towers, Wallis, Hunt, & Ken-
nerley, 2018), and subsequently computational models of this
phenomenon have begun to emerge (Murray et al., 2017) . In
contrast to those models which attempt to instantiate dynamic
encodings, delay dynamics emerge naturally from the contin-
gency representation RNN. This is because the mapping from
cue A and rule to contingency state takes time, and this tra-
jectory involves a rotation in sensory and rule readouts. If
analyzed from the perspective of sensory tuning this appears
to be a dynamic sensory code, when in reality it is a transfor-
mation from a primarily sensory representation during the cue
epoch to a contingency representation in the delay epoch.

Predictions for Neural Data
Crucially, contingency representations make unique predic-
tions to differentiate it from alternative models of working
memory, both high dimensional randomly connected network
(RCN) models (Rigotti et al., 2013) as well as from more tra-
ditional sensory models (Wong, 2006). First the dimension-
ality of contingency representations are low, as they are able
to use compositional states that reduce total representational
states. The effective dimensionality is lower than the number
of conditions, and an order of magnitude lower than RCNs.

Second, contingency representations make separable pre-
dictions for inter-conditional similarity in a CDL-type task. Us-
ing representational similarity analysis, we show neural mea-
sures can by classified as more in line with a contingency sim-
ilarity representation than a sensory similarity representation
or rule representational schema.

Lastly, the problem of high dimensional noise and random
non-linear mixtures makes many predictions vulnerable to a
variety of assumptions. In order to avoid these problems, we
applied a non-parametric variance partition analysis to our
network. By separating the data into linear variance, non-
linear contingency variance, and other non-linear variance,
and comparing contingency variance explained against per-
muted random non-linear interactions we demonstrate how
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we can identify whether an arbitrary system has more contin-
gency variance then would be expected for that model class.

Discussion
The contingency representation can be thought of as an inter-
mediate product compositional solution to the CDL task. In-
stead of trying to do the task in one step from the joint sensory
cue representation, by transforming the computation into two
stages a single complex classification problem can be turned
into two relatively more straightforward ones.

As such this representation utilizes an important concept of
time in recurrent systems as computation. It has long been
established that recurrent neural networks are analogous to
deep feedforward networks under certain constraints (Liao &
Poggio, 2016). For this reason it would seem logical that any
system would attempt to use this extra computational depth.
This may be a possible explanation for why similar phenom-
ena, of forward looking pre-computation, are identified in our
human subjects and task optimized RNN.

Independent of the reason for the representation itself, how-
ever, identifying a possible single representation that can ac-
count for the diversity of persistent delay tunings observed in
PFC neurons moves us in the direction of a unifying theory of
PFC function.

Lastly, our novel CDL task capable of dissociating differ-
ent possible representational schema will allow experimental
groups to test the existence of contingency representations in
humans in a neuroimaging context or with invasive recordings
in an animal model.
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