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Abstract 

Computational Cognitive Neuroscience aims to 
characterize the neural computations underlying 
behavior. To do so, we must integrate our understanding 
of cognition across its different subfields: cognitive 
science, computational neuroscience, cognitive 
neuroscience, and machine learning. One key challenge 
is evaluating whether the structure of cognitive processes 
– their definitions and interrelations – in each subfield is 
similar. If not, how different are they and how can we 
measure and ameliorate those differences? To answer 
these questions, we mined scientific abstracts from 
conferences representative of subfields to learn field-
specific word embeddings of cognitive concepts using 
Word2Vec. Vector representations are then used to 
generate hierarchical and 2D visualizations, forming 
empirical cognitive ontologies for each subfield. We find 
that robust ontologies, such as clusters representing 
language-related concepts, are automatically generated 
from each corpus. While differences between corpora are 
evident, exploratory analysis with word vectors can 
perform similarity queries, as well as more complex 
algebraic queries, e.g., “working memory” without 
“memory” retrieves “attention”. These results 
demonstrate the utility of automated text-mining and 
natural language processing in serving as a hypothesis-
generating procedure to populate manually-maintained 
ontologies in cognitive science, as well as suggesting 
potentially overlooked research opportunities across 
subfields. 

Keywords: ontology, cognitive processes, text-mining, 

neuroinformatics, meta-analysis 

Introduction 

The goal of Computational Cognitive Neuroscience (CCN), 

to quote the conference website directly, “is to develop 

computationally defined models of brain information 

processing […] that will ultimately have to perform feats of 

intelligence such as perception, internal modeling and 

memory of the environment, decision-making, planning, 

action, and motor control under naturalistic conditions.” 

Therefore, CCN represents the intersection of cognitive 

science, computational neuroscience, cognitive 

neuroscience, and artificial intelligence in investigating the 

cognitive (or computational) processes of intelligent systems.  

At first glance, this proposed merger appears straightforward 

(though technically challenging), as the subfields would only 

need to combine the knowledge they have independently 

gathered on cognitive processes such as “memory”. 

However, this assumes that these disparate fields all mean 

(approximately) the same thing when they refer to the term 

“memory”. In practice, however, it is unclear whether 

“memory” means the same thing to a cognitive scientist as it 

does to a computational neuroscientist. This merging 

problem is therefore not simply a task of connecting labelled 

pieces of information from different fields, but necessarily 

involves actively mapping between terms and concepts 

across disciplines, and creating conceptual alignment across 

the terminology. Here we ask whether, aside from surveying 

individual scientists, we can ask such questions about 

conceptual alignment between subfield in an empirical and 

quantitative way.  

The Structure of Cognition - Cognitive Ontology 

In general, scientific models can be thought of as 

relationships between concepts that make up a framework for 

understanding the physical world – an ontology. These 

concepts are often born from folk intuition, and are iteratively 

refined through empirical testing. As a classic example, the 

intuition that everyday objects are made up of elementary 
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substances evolved from earth, water, air, fire, and aether to 

the model of atomic elements we know today.  

Similarly, cognitive processes can be thought of as 

abstractions to overlapping aspects of different behaviors. An 

important milestone for CCN is to construct and refine these 

conceptual models, as well as filling out the relationship 

between them. Hence, one way to define meaning is to 

examine the relationship between concepts, e.g., to ask: 

where is “perception” embedded within the entire space of 

cognitive processes? 

In this work, we define an “empirical cognitive ontology” as 

the set of cognitive processes and their relationships as they 

exist in current scientific literature. Specifically, if processes 

X and Y are often studied and communicated in conjunction 

– such as is the case for attention and working memory – then 

they are “close” to each other within the latent space of 

cognitive processes. Importantly, this definition does not 

speak to the existence of some Platonic structure of cognition, 

only of what exists within scientific literatures. 

 

Previous Works on Cognitive Ontology-Mapping 
 

The problem of mapping cognitive ontologies has been 

previously investigated. Notably, Poldrack and colleagues 

(2011) started a monumental effort in charting the ontological 

space of cognitive processes, as well as their related 

experimental tasks and disease correlates, aptly named the 

Cognitive Atlas. These authors hand-crafted hundreds of 

cognition-relevant terms and their relations with each other, 

and invited researchers to contribute to documenting new 

relations. While quality-controlled, curating these processes 

by hand is ultimately subjective, relies on extensive manual 

effort, and must match the speed at which new evidence 

linking old processes is published.  

 

Recent efforts have leveraged more sophisticated and 

automated computational techniques towards a similar goal, 

on empirical data and meta-analysis of literature. Eisenberg 

et al. (2018) surveyed over 500 participants with a battery of 

psychological tests related to self-regulation and found latent 

factors relating to a smaller number of internal cognitive 

processes. Yarkoni et al. (2011) created Neurosynth as a 

meta-analysis of fMRI studies, providing voxel-level 

identification of the neural support of cognition. Text-mining 

has also been applied to article abstracts to find a small 

number of clusters representative of cognitive “latents” 

(Alhazmi et al., 2018), or to find associations between 

neuroscientific concepts, as well as gaps between topics that, 

statistically, should be more strongly related than they are 

(Voytek & Voytek, 2012). 

 

Comparing Multiple Ontologies Across CCN 
 

While the above efforts towards creating a cognitive ontology 

through combining data at a larger scale have been fruitful, 

they all come from the perspective of cognitive neuroscience 

and neuroimaging. Many cognitive processes, however, do 

not share the same practical definition across computational 

neuroscience and cognitive neuroscience, even if they are 

called the same thing. For example, “memory” within 

cognitive science may in fact be more associated with 

“perception”, but to “sleep” in computational neuroscience, 

from the perspective of existing literature.  

 

In this work, we seek to quantify how different the empirical 

ontologies are across the different areas of CCN. The 

importance of evaluating the various empirical structure of 

cognition is two-fold: first, because scientific findings are 

published at an ever-increasing rate over the last few decades, 

automated consolidation of these findings into a condensed 

ontology that agrees with human curation would serve as a 

valuable educational tool. Second, by examining the different 

ontologies extracted from different subdisciplines, we can 

more efficiently foster productive collaboration by 

identifying differences between ontologies, as well as avoid 

the potential cross-talk of referring to entirely different 

concepts using the same name. 

 

Data & Methods 
Text Data from Literature 

 
We collected conference proceedings from Cognitive 

Science Society (COGSCI), Cognitive Neuroscience Society 

(CNS), Computational and Systems Neuroscience 

(COSYNE), and Neural Information Processing Systems 

(NEURIPS) to represent literature from the various subfields 

of CCN. Text was either extracted through crawling 

conference websites directly or manually downloaded and 

converted from pdf documents. Each corpus consisted of all 

the accepted abstracts from 2008-2018, ranging between 

4800 to 7000 documents (specific years vary for each 

conference due to formatting idiosyncrasies).  

 

Vector Representation of Concepts and Arithmetic 

 
We trained a separate Word2Vec model using sentence-level 

representation of each corpus, resulting in a 100-dimensional 

vector for each unique vocabulary in the corpus. All 

subsequent analyses were restricted to a subset of 805 

cognitive terms that were collected from the “Concepts” page 

from the Cognitive Atlas. These were used as the main search 

terms below, and will thus be referred to as “cognitive terms”. 

Vector algebra can be performed on individual word vectors, 

as well as linear combinations of word vectors, to query for 

similar and dissimilar concepts. 

 

Automated Creation of Cognitive Ontologies 

 
Using their vector representation, we perform exploratory 

analysis using dimensionality reduction (t-SNE & UMAP) 

and hierarchical clustering for visualization of the top-100 
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most common cognitive terms in each corpus. All data, 

figures, and code can be found: 

https://github.com/voytekresearch/IdentityCrisis 

 
Figure 1: hierarchical clustering results for CNS and COGSCI word embeddings for the top 100 most frequent cognitive terms. 

Note that, for example, both ontologies contain a self-contained language cluster (left-middle, orange & green; right-middle, 

purple), while memory-related concepts (“working memory”, “maintenance”, etc) are clustered near the bottom for COGSCI, 

but are more spread out for CNS, indicating higher similarity (or co-occurrences) of these concepts in literature. 
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Results 
Concept Similarity and Algebraic Queries 
 

Using the vector representation of cognitive concepts, we 

can perform similarity and dissimilarity queries. Given the 

vector for a query term,  we can find other vectors with the 

smallest (similar) and largest (dissimilary) cosine angles. 

Table 1 shows the 5 most dissimilar concepts to “attention” 

in each corpus. These terms roughly represent the concepts 

that co-occur the least  with the query term. Interestingly, 

“risk” and “decision” come up in both CNS and NeurIPS. 

This presents an untapped opportunity to jointly investigate 

attentional and decision mechanisms in biological and 

artificial agents. 

 

Table 1: Top 5 most dissimilar concepts to ‘attention’. 

Note the occurrence of ‘risk’ and ‘decision’ in the CNS 

and NeurIPS corpora, highlighting a potential gap in 

research linking attention and decision-making. 

 
 

Similarity queries can also be performed with linear 

combinations of vectors. Word vectors preserve semantic 

relationships through algebraic manipulation, with the 

canonical example being “king” – “man = “queen” – 

“woman” in a general corpus. When we query for “working 

memory” alone, the most similar terms are other memory-

related concepts (not shown). However, we can search for 

concepts similar to working memory outside a shared 

context with memory by subtracting the vector for 

“memory” from “working memory” (Table 2). 

 

Table 2: Top 5 similar concepts to working memory – 

memory. Note the prevalence of attention-related 

concepts, indicating that when working memory is studied 

independent of “general” memory, it’s usually in 

conjunction with attention. 

 
The most related concepts in each corpus appear to be those 

related to decision-making and attention, potentially 

reflecting a relationship between these short-timescale 

processes.   

 

Hierarchical and 2-D Cognitive Ontology 
 

Figure 1 above shows examples of hierarchical clustering 

for Cognitive Neuroscience and Cognitive Science. First, 

we note that sensible clusters appear for each corpus. For 

example, both corpora have a cluster of relatively well-

defined language-related terms, indicating that research on 

language within cognitive neuroscience and cognitive 

science are relatively self-contained, i.e., do not involve 

simultaneous investigation of other processes. We also 

note corpus-specific differences, such as a lack of memory-

related cluster for COGSCI, as it appears in CNS. On the 

other hand, “consciousness” and “theory of mind” make up 

a cluster in Cognitive Science, indicating the presence of 

research investigating “higher-level” cognitive processes 

in ways that do not exist in Cognitive Neuroscience. Due 

to space constraint, we did not include 2-D visualizations 

using UMAP and t-SNE; they can be found in the online 

repository: 

https://github.com/voytekresearch/IdentityCrisis/figures/  

 

Conclusion 
 

In summary, we find that 1) vector algebra and cosine 

similarity can be directly applied to query for related and 

unrelated concepts; 2) sensible ontologies can be 

automatically extracted; and 3) we observe similarities and 

differences between the empirical ontologies of different 

subfields. These results demonstrate the utility of 

automated text-mining and semantic analysis in serving as 

a hypothesis-generating procedure to further populate 

manually-maintained ontologies in cognitive science, such 

as the Cognitive Atlas, as well as in suggesting potentially 

overlooked opportunities across subfields.  
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