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Abstract

A key goal in neuroscience is to understand brain mech-
anisms of cognitive functions. An emerging approach is
the study of brain states dynamics using functional mag-
netic resonance imaging (fMRI). In this project, we applied
graph convolutional networks (GCN) to decode brain ac-
tivity over short time windows in a task fMRI dataset,
i.e. associate a given window of fMRI time series with
the task used. We investigated the performance of this
GCN cognitive state annotation” in the Human Connec-
tome Project (HCP) database, which features 21 different
experimental conditions spanning seven major cognitive
domains, and high temporal resolution in task fMRI data.
Using a 10-second window, the 21 cognitive states were
identified with an excellent average test accuracy of 92%
(chance level 4.8%). Performance remained good (60%)
even at a temporal resolution of one volume (720 ms of
duration). As the HCP task battery was designed to selec-
tively activate a wide range of specialized functional net-
works, we anticipate the GCN annotation to be applicable
over a broad range of paradigms, including resting-state.
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Introduction

Modern imaging techniques, such as functional magnetic res-
onance imaging (fMRI), provide an opportunity to accurately
map the neural substrates of human cognition. An emerg-
ing topic in the literature is the identification of brain states,
characterized by a canonical spatio-temporal pattern of func-
tional activity, and associated with specific cognitive states. A
popular approach to identify these brain states, called multi-
voxel pattern analysis (MVPA), uses machine learning tools to
decode which task a subject performed based on recordings
of brain activity in task fMRI (Norman, Polyn, et al., 2006).
But the algorithm is usually limited to specific cognitive do-
mains and relies on long acquisition of brain activity with re-
peated blocks to accurately decode a brain state. This paper
aims at generalizing the brain decoding a wider cognitive bat-
tery and finer temporal resolution. For which, we proposed a
new brain annotation pipeline based on graph convolution net-
works (GCNs). Three types of brain graphs were investigated.
The models were validated using data from Human Connec-
tome Project (HCP) (Van Essen, Smith, et al., 2013), which
includes a large collection of fMRI data acquired from 1200
subjects, during 21 different cognitive tasks, in seven cogni-
tive domains. Moreover, the high spatio-temporal resolution
of fMRI signals (Van Essen, Ugurbil, et al., 2012), and conse-
quently opened new avenues to characterize the dynamics of

human cognitive functions using Deep neural networks.

Materials and Methods

To annotate the dynamics of cognitive states, we proposed
a new brain decoding architecture based on graph convolu-
tional network (Figure 1), which takes short series of func-
tional data as input, applies information propagation among
inter-connected brain regions and networks, and predicts the
corresponding cognitive states based on the high order graph-
level representations.
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Figure 1: Pipeline of functional brain decoding using graph
convolutions

Populational brain graph

Here we used the multimodal cortical parcellation of the hu-
man brain (Glasser, Coalson, Robinson, et al., 2016), which
delineates 180 functional areas per hemisphere. These brain
parcels were defined as the nodes in the brain graph, while the
connections between nodes were defined in different manners
including: 1) spatial graph: by counting the shared vertices
between two parcels on the white surface; 2) structural graph:
by correlating the cortical thickness across 1096 subjects with
surface curvature regressed out (Glasser et al., 2016); 3) func-
tional graph: by calculating the group averaged functional con-
nectivity based on 1080 minimal prepossessed resting-state
fMRI data with the signals from white matter and csf regressed
out and temporally bandpass filtered between 0.01 to 0.1 HZ
(Glasser, Sotiropoulos, Wilson, et al., 2013). The correlation
values of the structural and functional graphs were first nor-
malized using Fisher z-transform and then weighted using a
Gaussian kernel in order to scale from 0 to 1. To control for
the effect of different sparsity levels in the spatial, structural
and functional connectome (Figure 2), a KNN-graph was built
for the brain graphs with each brain region only connected to
its 8 strongest connected neighbours.
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After mapping the minimal preprocessed task-fMRI data
onto a set of brain regions, a sampling scheme was used
on the temporal components in order to extract the task-
corresponding fMRI time-series of specific length (ranging
from 0.7s to 10s). We generalized the decoding models to
predict all 21 task states from the seven cognitive domains,
namely: emotion, gambling, language, motor, relational, so-
cial, and working memory. Within each cognitive domain,
there are between-subject variations in the number of con-
ditions and duration of task trials. Additional information on
fMRI data acquisition, preprocessing, and task design can be
found in (Barch, Burgess, Harms, et al., 2013) and (Glasser
etal.,, 2013).

Spatial graph Structural graph Functional graph

05 o
E)

08

100

06 03 150
20

250

E
H
2
=
S
3
E
5
E
F
) %0
[

00

Figure 2: The sparse connectome matrix of spatial, structural
and functional graphs

Graph convolution layer

GCN originates from graph signal processing on a weighted
graph G = (V,E,W) that defines a network structure be-
tween brain regions. The set ¥ is a parcellation of cere-
bral cortex into N regions, and E is a set of connections be-
tween each pair of brain regions, with its weights defined as
W,.,;. Graph convolution relies on the graph Laplacian, which
is a smooth operator characterizing the magnitude of signal
changes between adjacent brain regions. The normalized
graph Laplacian is defined as:

L=I1-D'"?wp /2 (1)

where D is a diagonal matrix of node degrees and I is the
identity matrix. For a signal x defined on graph, i.e. assigning
a feature vector to each brain region, the convolution operation
between the signal x and a filter gg, based on graph G, is
defined as:

xxgg=UGpUTx 2

where Gy = diag(U7 g¢) and U = (u,...,uy_1) is the ma-
trix of Laplacian eigenvectors. With different choices of gg, we
can construct different graph convolutional networks. Here we
use the ChebNet convolutions (Defferrard, Bresson, & Van-
dergheynst, 2016), which uses the Chebychev polynomial ex-
pansion of the Laplacian matrix in place of the spectral de-
composition:

K
X*gg = Z 0, T (L)x
k=0

@)

where L is a normalized version of the Laplacian, equals to
2L/Amax — I, with Amax being the largest of the eigenval-
ues. In our models, Amax~1.0 for all three types of brain

graphs. This normalization is essential to preserve the mag-
nitude of the graph signal x across multiple representations,
especially when combining several graph convolutional lay-
ers. A simple recursive formula can be used to compute the
Chebychev polynomials of order k from the previous orders,
T (x) = 2T—1 (x) — Tr—2(x) with Tp(x) = 1,T1(x) = x, mak-
ing the solution simple to implement. The ChebNet is com-
putational efficiency, and scalable to large-scale graphs, as it
avoids computing the full spectrum of the graph.

Up to this point, we define a parametric model for a graph
convolution layer with one input channel. This can be eas-
ily generalized into multiple filters and channels. Specifi-
cally, we train a separate model for each channel (i.e. each
fMRI volume per TR), and then summarize across multiple
channels. This operation is repeated for each filter indepen-
dently and followed by applying a nonlinear activation func-
tion, e.g. ReLU(.) = max(0,.). This multi-channel, and
multi-filter structure enriches the final graph representations
of fMRI time-series, and is further improved by stacking mul-
tiple layers. The final GCN architecture consists of six con-
volutional layers with 32 filters at each layer, followed by two
fully-connected layers (256- 64 - num-of-states).

The implementation of our proposed GCN annotation
model is based on Pytorch 1.1.0. The impact of k order in
ChebNet is especially investigated as well as the choice of dif-
ferent brain graphs. The networks are trained for 100 epochs,
and using the Adam optimizer which keeps separate learning
rates for each weight, as well as an exponentially decaying
average of previous gradients. The batch size varies from 20
to 130 depending on the chosen time windows. The entire
dataset is split into training (70%), validation (10%), test (20%)
sets using a subject-specific split scheme, which means that
all time-series from the same subject was assigned to one set.
The best model, with the highest prediction accuracy on the
validation set is saved for further testing analysis.

Representational similarity analysis

The stacked GCN layers provide a graph embedded repre-
sentation of fMRI time-series corresponding to each experi-
mental trial. In order to validate such representation includes
state-specific features, we map the representations back onto
the cerebral cortex, and generate a new activation pattern for
each trial. Furthermore, a representational similarity analy-
sis is conducted by calculating spatial correlations among the
activation patterns. The resultant RSA matrix characterizes
both within-state similarity, and the between-state dissimilarity
in graph representations of fMRI time-series. We further sum-
marize it into a state-RSA matrix by averaging the similarity
values for each category of brain states. The RSA was only
performed on the test set with the saved best model.

Results

We applied the proposed GCN state annotation pipeline to in-
fer which of the 21 task state associated with a given short
time windows in a fMRI time-series. Using a 10-second win-
dow (approximately the shortest duration of all task trials), the
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21 cognitive states were identified with an average test accu-
racy of 92%. A temporal resolution of one volume (720 ms of
duration), the prediction accuracy remained good (60%). Af-
ter taking into account of the delay effect of hemodynamic re-
sponse function in BOLD signals, i.e. excluding fMRI volumes
within 6s after task trial started from both training and test
sets, the performance was improved and reached 80%. We
further investigated the impact of following factors, including
the order K of used Chebychev polynomials and the choice of
brain graphs.

Impact of order K

The ChebNet is K-localized in space by taking up to K-th order
polynomials, which means that at each layer, the information
and attributes only propagate to the Kth-order neighborhood.
Here we investigated the impact of order K by spanning over
the list of [1,2,5,8,10]. As shown in Figure 3 A, a gap in perfor-
mance of spatial-ChebNet appeared when increasing the or-
der from 2 to 5, and reached a stable range after order 5. This
is probably due to the fact that spatial brain graph is mostly
consist of short-distance connections (Figure 2). Thus, the
global efficiency of the brain graph is constrained by a small
neighborhood, where the information is not transmitted across
networks and modules. But when we enlarge this neighbor-
hood sufficiently, this constraint disappears by rebuilding the
between-network communications. In the following analysis,
we fixed the order K =5 for ChebNet.

Impact of brain graphs

In contrast to favoring short-distance connections in the spa-
tial graph, the structural and functional graphs also include
more long-distance connections (Figure 2). Thus, by increas-
ing the order K of ChebNet, we did not see much improve-
ment in performance especially for the structural graph. As
for the functional graph, the impact only happened in the early
phase of training (before 40 epochs), when we increased from
1st- to 2nd-order. The prediction accuracy plateaued after a
sufficient number of epoch trials. On the other hand, when
we fixed the order K = 5, similar performance was achieved
from the spatial and functional graphs, with both being higher
than the structural graph. This is probably due to high ratio
of long-distance connections in the structural graph that the
information transmits faster between-communities than within
networks, which consequently confused the state predictor.
Furthermore, the model training time also showed a big dif-
ference among the brain graphs, with the shortest training for
spatial (350s per epoch), and the longest training for functional
(480s per epoch). To summarize, with 5-th order neighbor-
hood, the spatial-GCN achieved highest prediction accuracy
with the shortest training time, and the least computational re-
sources. In the following analysis, we focused on the spatial
graph.

Representational similarity analysis

The similarity analysis of high-order graph representations in-
dicated a nice disassociation between different type of brain
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Figure 3: The effect of the order K for ChebNet using spa-
tial graph and comparing between choices of different brain
graphs

states. For instance, as shown in Figure 4, the RSA ma-
trix of the Motor task showed high within-state similarities
(0.30, 0.28, 0.27,0.27 and 0.35 respectively), and much
lower between-state similarities (average is 0.031). More-
over, we found higher similarity between left and right foot
movements (r=0.12) compared to foot versus tongue move-
ments (r=0.008), while the similarity between left and right
hand movements was moderate (r=0.045). In order to visu-
alize these graph representations, the t-distributed Stochastic
Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008) was
used to project the representations of all experimental trials
down to 2 dimensions. As shown in Figure 4 C, the tongue
movement was highly separated from others, while the map-
ping between left and right foot movements were largely over-
lapping. These findings was in line with the RSA above.

Conclusion and Discussion

We proposed a GCN architecture to annotate cognitive states
of the human brain. This model annotates brain activity with
fine temporal resolution, and fine cognitive granularity. Us-
ing a 10s window of fMRI signals, our model identified 21
different task conditions with a test accuracy of 92%. The
performance of the annotation model relies on the global effi-
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Figure 4: Representational similarity analysis of the graph rep-
resentations of fMRI time-series acquired from the Motor task.
The RSA matrix was shown for both brain states (A) and ex-
perimental trials (B). Visualizations of the graph representa-
tions using t-SNE (C)

ciency of information propagation on the graph. This efficiency
could either come from the organization of brain graphs, or
the architecture of GCN. At the level of graph organization,
the global efficiency originates from the small world architec-
ture (Bassett & Bullmore, 2006) characterized by a high local
clustering coefficient, and a small shortest-path length. In this
study, we compared three types of brain graphs, including the
spatial graph which only connects each brain region to its di-
rect neighbours, the functional graph which consists of dense
local connections and a few long-range connections, as well
as the structural graph which includes more long-range con-
nections. Our results indicated that functional graph generally
performed better than spatial graph when using a localized
small neighborhood in graph convolutions (Figure 3). The ad-
vantages of using the functional graph are mainly contributed
by the long-range connections including within- and between-
network as well as inter-hemisphere connectives. Meanwhile,
the GCN architecture plays an complementary role to the
transmission efficiency. Here, we used ChebNet convolution
in the core GCN layers, which propagates brain activities and
other attributes among the Kth-order neighborhood, making
it K-localized in space (Defferrard et al., 2016). With a rel-
ative large value of the order K, the graph convolutions can
improve the efficiency of the chosen brain graph by expanding
the range of information propagation per step. This character-
istic is especially helpful for the spatial graph. In line with this,
we found a jump in the state prediction accuracy by increas-
ing to the 5th-order neighborhood (Figure 3 A). Meanwhile, it
did not impact the other brain graphs which already included
a sulfficient portion of long-range connections. To conclude,
in order to maintain a high performance in brain state anno-
tation, we can either use a high globally efficient graph like
the functional graph which was constructed from resting-state
functional connectives, or use a high order in ChebNet convo-

lutions.

The embedded graph representations of fMRI data were
validated in two ways. Firstly, the RSA matrix at both state-
and trial-level showed a disassociation across different task
conditions while maintaining high similarity within states. A
10-fold difference was observed among within- and between-
state similarities. This indicated that the GCN models accu-
rately captured some state-specific features. The pretrained
GCN models can predict brain states in other individual brain
mapping applications or the extracted graph representations
of fMRI activities that are associated with behavioral, and cog-
nitive measures. Secondly, we used t-SNE to map the high-
level graph representations onto a 2d space, which indicated
isolated clusters for different task conditions. Both RSA ma-
trix and t-SNE mapping showed a distinct representation be-
tween hand, foot and tongue, which is in line with the soma-
totopic maps in the primary motor cortex. It is also interesting
to notice that the representations between left and right foot
were more largely overlapped than left-vs-right hands. Similar
patterns have been shown in (Barch et al., 2013) that larger
overlapping of activation patterns of left-right foot movements
in the medial surface, than of left-right hand movements in the
lateral surface of the primary motor cortex.

Acknowledgments

This work was supported in part by the Courtois NeuroMod
Project and IVADO Postdoctoral Scholarships Program.

References

Barch, D. M., Burgess, G. C., Harms, et al. (2013). Function in
the human connectome: task-fmri and individual differences
in behavior. Neuroimage, 80, 169—-189.

Bassett, D. S., & Bullmore, E. (2006). Small-world brain net-
works. The neuroscientist, 12(6), 512-523.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016).
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information process-
ing systems (pp. 3844—-3852).

Glasser, M. F, Coalson, T. S., Robinson, et al. (2016). A
multi-modal parcellation of human cerebral cortex. Nature,
536(7615), 171.

Glasser, M. F,, Sotiropoulos, S. N., Wilson, et al. (2013). The
minimal preprocessing pipelines for the human connectome
project. Neuroimage, 80, 105—124.

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using
t-sne. Journal of machine learning research, 9(Nov), 2579—
2605.

Norman, K. A., Polyn, et al. (2006). Beyond mind-reading:
multi-voxel pattern analysis of fmri data. Trends in cognitive
sciences, 10(9), 424—430.

Van Essen, D. C., Smith, et al. (2013). The wu-minn human
connectome project: an overview. Neuroimage, 80, 62—79.

Van Essen, D. C., Ugurbil, et al. (2012). The human connec-
tome project: a data acquisition perspective. Neuroimage,
62(4), 2222-2231.

1140



