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Abstract: 
The visual system is organized hierarchically with 
feedforward and feedback pathways mediating cross-
area communication. However, it is challenging to 
segregate these connections functionally and thus the 
logic of information flow remains unclear. Here, we 
studied this question by simultaneously recording from 
six visual cortical areas in awake mice with Neuropixels 
probes. We found two distinct neural ensembles based 
on their functional connectivity pattern: one ensemble is 
dominated by connections that  drive the activity in the 
network (‘driver’), while another ensemble is more driven 
by network activity (‘driven’).  ‘Driver’ neurons were more 
numerous in supragranular layers, whereas ‘driven’ 
neurons were more abundant in infragranular layers. 
Interestingly, although both ‘driver’ and ‘driven’ neurons 
were found across all cortical areas, the proportion of 
driven-to-driver cells systematically increased across the 
visual hierarchy. Strong directional information  flow 
between these subnetworks was present during sensory 
stimulation, but not during spontaneous activity. The 
‘driver’ ensemble showed earlier and more transient 
responses compared to the ‘driven’ ensemble. A rate 
model of the network recapitulated the link between 
response latency and functional connectivity. Overall, 
our study revealed distinct multi-area ensembles with 
distinct roles in information flow.  
Keywords: visual cortex; functional connectivity; 
Neuropixels  

Introduction 
The mammalian visual cortex is organized 
hierarchically (Felleman & Van Essen, 1991; Markov et 
al., 2014), with increasing response latencies and 
enlarging receptive fields along the visual hierarchy 
(Freeman & Simoncelli, 2011; Lamme & Roelfsema, 
2000). Information between different areas is 
transmitted through extensive axonal projections. A 
projection is considered feedforward when ascending 
from lower to higher areas of the hierarchy, but 
otherwise is feedback. It is generally assumed that the 
feedforward pathways propagate sensory information 
into the system, whereas the feedback pathways carry 
top-down signals such as prediction, expectation or 
attention to modulate or gate the sensory inputs (Gilbert 
& Li, 2013; Lamme, Supèr, & Spekreijse, 1998). 

However, since the cortical network is densely 
interconnected with feedforward, feedback, and 
horizontal connections, the logic of information transfer 
remains poorly understood.  

Previous anatomical studies suggested that 
feedforward and feedback connections are cortical 
layer dependent. In primates, feedforward connections 
tend to originate in supragranular layers of the source 
area and target granular layers, whereas feedback 
projections tend to originate in infragranular layers and 
avoid targeting granular layers (Felleman & Van Essen, 
1991; Markov et al., 2014). The fraction of projecting 
neurons in the supragranular layers of a source area 
reflect the hierarchical position (Barone, Batardiere, 
Knoblauch, & Kennedy, 2000; Markov et al., 2014). 
However, this general guideline is not absolute. For 
example, about half of the neurons that make feedback 
projections from V2 to V1 are located in the 
supragranular layers (Barone et al., 2000). Moreover, 
the organization of feedforward and feedback 
connections could be different across species (e.g. 
mice: Harris et al., 2018). Another complexity is that  
single cells can project to multiple target areas (Han et 
al., 2018). Thus, it is currently unclear how cross-area 
projections are utilized in feedforward and feedback 
processing in the mouse cortex.  

Here we asked whether we could identify distinct 
neural ensembles in mouse visual cortex based on their 
patterns of functional connectivity derived from brief-
timescale correlations in spiking activity between pairs 
of neurons. We sought to determine the spatial 
distribution of these neurons and address the roles of 
these different neural subnetworks in feedforward and 
feedback pathways based on their connectivity 
patterns, source and target layers, direction of 
functional influence relative to the visual hierarchy, and 
response dynamics.  

Methods  

Recording Setup and Experimental Design We 
developed a standardized platform to simultaneously 
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record from 6 Neuropixels probes (Jun et al., 2017) (Fig 
1A, 384 densely arranged recording sites along a linear 
shank), which were inserted in mouse primary visual 
cortex (V1) and 5 higher-order visual cortical areas (LM, 
RL, AL, PM, and AM). During recording, mice were 
head-fixed but free to run on a wheel while viewing 
visual stimuli presented on a LCD monitor (Fig 1B). To 
maximize measurable functional connectivity across 
areas, we targeted regions with overlapping receptive 
fields (RF) guided by a retinotopic map (Fig 1C). 
Targeting was validated by mapping RFs of all cells with 
small Gabor patches presented at different locations on 
the screen. All analysis was restricted to neurons with 
well-defined receptive fields within the screen 
boundaries. To compare functional networks during 
distinct sensory input, we used three types of visual 
stimuli: drifting gratings, natural movies and mean 
luminance gray screen. On average, each recording 
session yielded 608±29 neurons (n = 16 mice; 
mean±SEM) simultaneously recorded from the 6 visual 
cortical areas. 

Analysis Methods After spike sorting with Kilosort 
(Pachitariu et al., 2016), we analyzed functional 
interactions between simultaneously recorded neurons 
using jitter-corrected cross-correlograms (CCG) (Jia, 
Tanabe, & Kohn, 2013; Smith & Kohn, 2008). The jitter-
corrected CCG reflects temporal correlations between 
a pair of neurons within the jitter-window (25ms). We 
derived the directed connection weight by subtracting 
the sum of (-13 to 0) ms of the CCG from the sum of (0 
to 13) ms of the CCG. Computing this for each pair of 
neurons produced a directional connectivity matrix for 
each mouse (Fig. 2 A, B). In order to find neurons with 
shared connectivity pattern to the rest of the network, 
we clustered the directional connectivity matrix by 
treating the connectivity pattern from each source 
neuron to all target neurons as features. To remove 
redundancy, we projected the connectivity features into 
a lower dimensional space with principle component 
analysis (PCA). We applied a consensus clustering 
method to obtain robust clusters that are not biased by 
random initial conditions. First, we constructed a co-
clustering probability matrix by running k-means with 
different initial conditions until the matrix is stable. Then, 
the probability matrix was clustered with hierarchical 
clustering. The number of clusters was determined by 
the elbow method. 

Results 
We found three clusters of neurons based on their 
shared connectivity patterns (Fig 2C): neurons in 
cluster 1 had mostly weak connections; cluster 2 
neurons contained more positive connections that drive 
activity in the network; neurons in cluster 3 contained  

 

Figure 1. Multi-area Neuropixels recordings. A) 
Neuropixels probe. B) Recording setup. C) Visual 

cortical areas defined by retinotopic mapping. Colored 
outlines highlight the 6 visual areas. D) Current source 

density for layer estimation. E) RFs of units from an 
example mouse. Each circle represents the RF of one 

unit. F) Raster of simultaneously recorded cortical 
neurons (12 seconds with drifting grating stimuli). G) 

Normalized PSTH showing temporal response to 
drifting gratings (n=16 mice; legend show number 
units). H) Time to response onset (mean±SEM)  

more negative connections. Based on the bias in the 
proportion of positive and negative connections from 
each cluster, we named cluster 2 neurons as the ‘driver’ 
ensemble and cluster 3 as the ‘driven’ ensemble. 
Interestingly, both ‘driver’ and ‘driven’ ensembles were 
distributed within and across cortical areas, but the 
relative proportion of these two clusters showed strong 
layer and area biases. The ‘driver’ neurons resided 
more in the supragranular layers, while the ‘driven’ 
neurons  resided more in the infragranular layers (Fig 
2E). The proportion of ‘driver’ vs ‘driven’ neurons 
systematically changed across the visual hierarchy 
(inferred from response latency (Fig 1H)),  such that the 
fraction of driver neurons decreased along the 
hierarchy but driven neurons increased  (Fig 2F). 
Consistent with these clusters representing functionally 
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distinct sets of neurons, the temporal dynamics of the 
‘driver’ and ‘driven’ ensemble were significantly 
different. Neurons in the ‘driver’ ensemble showed 
earlier responses (mean time to peak=75±1.3ms) 
compared to those in the ‘driven’ ensemble (mean time 
to peak=90±1.0ms) (Fig 3).  

 

Figure 2. Distinct inter-area subnetworks defined by 
shared functional connectivity patterns. A) Example 

CCG. B) Directed connectivity matrix from an example 
mouse. Each matrix entry value represents the 

strength and directionality of the functional connectivity 
of one pair of neurons. C) Clustering on the directional 
connectivity matrix revealed 3 clusters. D) Averaged 
connection strength from each cluster to each neuron 

in the network (error bars represent 95% CI; 
n_cluster1=926; n_cluster2=846, n_cluster3=846 in 16 

mice). E) Laminar distribution of the ‘driver’ and 
‘driven’ neural ensembles. F) Proportion of ‘driver’ and 

‘driven’ ensembles for different cortical areas.  

Because distinct classes of visual stimuli drive the 
visual system differently, the neuronal response and 
functional interactions between neurons may change 
with stimuli. For example, drifting grating stimuli 
normally induce a strong coherent drive to the visual 
system, while natural movie stimuli with a different 
spatiotemporal structure normally induce sparser 
response patterns. Therefore, we compared the 

subnetworks from ‘driver’ to ‘driven’ ensembles across 
different stimuli, and found that drifting grating stimuli 
induced a strong information flow from the ‘driver’ 
ensemble to the ‘driven’ ensemble and natural movie 
stimuli induced a weaker but similar connectivity 
pattern. However, spontaneous activity (gray screen) 
showed little directional bias between the two 
ensembles. These results suggest that only when the 
network is driven by external stimuli is there a clear 
direction of information flow from the ‘driver’ to ‘driven’ 
neurons.  

To explore the link between temporal dynamics and 
information flow between areas, we built a fully-
connected, multi-area rate model based on the 
functional adjacency matrix measured in vivo. We 
generated the aggregated adjacency weight matrix by 
taking the mean amplitude of the sharp-peaks of 
putative monosynaptic CCGs between pairs of areas, 
separately for the ‘driver’ subnetwork and ‘driven’ 
subnetwork. Our model recapitulated the measured 
latency difference between the two neural ensembles 
within and across areas. This shows the network 
connectivity patterns are sufficient to produce the 
temporal dynamics suggesting a fundamental link 
between them. 

 

Figure 3. Distinct temporal dynamics in functional 
networks. A) Population average of normalized PSTH 
for different clusters. B) Layer dependency of time to 
peak in different neuronal ensembles. Top: Summary 
of time-to-peak at different depths relative to layer 4 
(n=16 mice). Bottom: distribution of time to peak in 

different ensembles (Student t-test p = 2.8E-6 for time-
to-peak between cluster 2 and 3). 

Discussion 

We identified two distinct cortical ensembles based on 
their functional connectivity patterns within the multi-
area networks of mouse visual cortex. The ‘driver’ 
ensemble distribution is biased towards supragranular 
layers, whereas the ‘driven’ neurons were more 
prominent in infragranular layers. Importantly, the 
distribution of ‘driver’ vs ‘driven’ neurons systematically 
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changed across the visual hierarchy (defined in Harris 
et al., (2018)). Previous studies suggest that neurons 
mediating feedforward projections tend to originate in 
supragranular layers of the source area (Felleman & 
Van Essen, 1991; Markov et al., 2014), and the fraction 
of projecting neurons in supragranular layers decrease 
along the hierarchy (Barone et al., 2000). Because 
‘driver’ neurons were biased for supragranular layers 
and their proportion in each area reduced along  the 
visual hierarchy, it is likely that the ‘driver’ ensemble in 
each area is more involved in feedforward processing.  

Our findings on cross-area functional connectivity 
suggest that distinct ensembles of neurons in each 
cortical area predominately either receive or provide 
long-range connections to other cortical areas. 
Moreover, our results indicate that ‘driver’ neurons 
functionally drive activity in multiple cortical areas; 
similarly, ‘driven’ neurons receive functional inputs from 
multiple sources. This distributed functional architecture 
could allow efficient, parallel processing across areas of 
the cortex. Lastly, unlike anatomical connectivity, the 
functional connectivity is a dynamic entity that can be 
restructured by external stimulus input.   

Our results also suggested a link between neuronal 
dynamics and information flow. Neurons that 
responded earlier and more transiently sent information 
out of an area, whereas neurons that responded later 
with more sustained activity received input from other 
areas. This link is validated with a fully-connected rate 
model based on measured connectivity strength, 
indicating a fundamental relationship between network 
functional connectivity and temporal dynamics in 
response to external stimuli.  

To our knowledge, this study is the first to measure 
single neuron-level functional connectivity with high 
temporal resolution in the multi-area cortical networks 
of the mouse visual system. Our analysis separated 
cortical neurons into distinct ensembles based on their 
functional connectivity to the network. The dynamics, 
layer, and hierarchical dependency suggest these 
functional-connectivity defined neuronal ensembles 
may participate differently in feedforward and feedback 
pathways, and thus provide a path to deciphering the 
information flow in the cortical network. 
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