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Abstract: 

Understanding how goal states control behavior is a 
question intersecting attention, action, and recognition, 
and one that is ripe for interrogation by new methods 
from machine learning. This study uses inverse-
reinforcement learning (IRL) to learn the reward function 
and policy underlying the simplest of goal-directed 
actions—shifts of gaze—in the service of the simplest of 
goals—finding a desired target category.  Training this 
IRL model of categorical search required the creation of 
a large-scale dataset of images (4,366) that are labelled 
with the fixations of people searching for one of two 
target-category goals (microwaves or clocks). The IRL 
model is evaluated against a test dataset consisting of 
the fixations of 60 people searching for either a 
microwave (n=30) or clock (n=30) in the same images. 
The IRL model successfully predicted behavioral search 
efficiency and fixation density maps using multiple 
metrics. Moreover, reward maps and action maps 
recovered by the IRL model revealed target-specific 
patterns that reflect, not just attention guidance to target 
features, but also guidance by scene context (e.g., 
clocks are often on walls). Using methods from machine 
learning it is now possible to learn the reward functions 
that more broadly capture the target-object context. 
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Introduction 

Most cognitively-meaningful behavior is made in the 
service of a goal, but computational models of goal-
directed attention control are still in their infancy. 
Several models use saliency maps to predict fixations 
during free-viewing (Borji, Sihite, & Itti, 2013), but this 
task is largely absent a goal. Here we focus on the 
simplest goal-directed task, categorical visual search, 
the search for a target-object goal of a particular 
category (Schmidt & Zelinsky, 2009). Existing models 
of categorical search predict fixations by comparing 
learned target features to image features to compute a 
priority map (e.g., Zelinsky, Adeli, Peng, & Samaras, 
2013; Adeli & Zelinsky, 2018). Here we conceptualize 
priority as expected reward. By assigning reward to 
labelled person-like behavior, we can learn a reward 
function and use it to predict fixations made during the 
goal-directed search for a target category.  

Inverse Reinforcement Learning 
Inverse reinforcement learning (IRL) is a method for 
learning a mapping from a State to an Action, termed a 

Policy, based on the selective application of reward. 
Our implementation makes the reward proportional to 
the model’s ability to make State-Action pairings that 
mimic or imitate observed State-Action pairings (Ho & 
Ermon, 2016). Over training, and through the greedy 
maximization of total expected reward, the model 
learns a Policy (or reward function) that can be used to 
predict new Actions given new States. In the current 
context, the Actions are shifts in fixation location over 
an image (saccades), and the State is the search 
context, which can be understood as the totality of 
available information for use in the search task. This 
includes (but is not limited to) the input image and 
learned visual features of the target category. IRL 
assumes that the Policy learned through previous 
observations of people searching for a target category 
will predict the fixation behavior of new people 
searching for the same category in new images.  

Model Methods 

Model training can be broadly conceptualized as an 
Actor (A) and a Discriminator (D) locked in an 
adversarial process (Ho & Ermon, 2016), one that is 
driven by the maximization of total expected reward 
(Fig. 1). The Actor generates eye movements (actions) 
with the goal of fooling the Discriminator into believing 
that they were made by a person. The Discriminator 
tries to discriminate real fixations from the Actor’s 
fixations, with greater reward assigned to person-like 
actions fooling the Discriminator. This reward-driven 
adversarial process plays out during training, with the 
result being an Actor who becomes highly adept in 
imitating the behavioral fixations made during 
categorical search. Specifically, at training, D provides 
immediate reward after each state-action pair by A, 
and from this a Policy is learned that maximizes the 
cumulative reward across all pairings. At testing, this 
trained Policy is used to predict fixations made to the 
target category in response to new States.                           

 

Figure 1: The adversarial IRL model of categorical search. 
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Cumulative Movements of a Foveated Retina 
A novelty of our approach is that it integrates state-of-
the-art IRL with a fixation-based state encoder, which 
accumulates high-resolution visual information with 
each movement of a 16×16 pixel fovea. We gave our 
model a fovea, without which changes in fixation would 
be unnecessary, by applying the method from Geisler 
and Perry (2002) to an input image to create what we 
call a Retina-Transformed (ReT) image. Figure 2 
shows an example of cumulative ReT-images obtained 
at each of three fixation locations (0,1,2), with the 
sequence of these images comprising a dynamic state 
representation. For state encoding we used a pre-
trained ResNet-50 that was dilated and fine-tuned on 
ReT-images. Over sequential fixations, a high-
resolution state representation is thus created for 
predicting goal-directed attention control. To define the 
action space for the IRL model, a ReT-image is 
discretized into a 10×16 grid of 32×32 pixel cells, with 
the center of each grid cell corresponding to a 
potential fixation location. At each time step, one of 
these 160 possible locations is selected for an action.  
 

 

The Microwave-Clock Search Dataset 

The most predictive models of fixation behavior are in 
the context of free-viewing, where models are trained 
on large image datasets that are annotated with 
fixations made during a free-viewing task (Kummerer, 
Wallis, Gatys, & Bethge, 2017). Training is also 
required to learn a target category’s reward function, 
but there is spotty availability to suitably large datasets 
of fixations made during categorical search.  Those 
that do exist are either limited to person search 
(Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009), or 
are broader but do not use a standard search task.  

The MCS dataset consists of COCO2014 (Lin et al, 
2014) images labeled as containing either a 
microwave oven or a clock, from which we created 
disjoint training and testing datasets. Image selection 
excluded scenes depicting a person or animal, and 
digital clocks in the case of the clock target category. 
This latter constraint was introduced because the 
features of analog and digital clocks are very different, 
and we were concerned that this would introduce 
unwanted variability in the search behavior. No 
additional exclusion criteria were used to select the 
training images, with our goal being to include as 

many images for training as possible. This left 1,494 
analog clock images and 689 microwave images, 
which varied greatly in terms of search difficulty (Fig. 
3, top). Test images were fewer in number (n=40), 
allowing their selection to be more highly controlled. 
Test images were further constrained to have: (1) 
depictions of both a microwave and a clock (allowing 
different targets to be designated in the identical 
images), (2) only a single instance of the target, (3) a 
target’s size less than 10% of the image size, and (4) 
targets not appearing at the image’s center (based on 
a 5×5 grid). These exclusion criteria resulted in the 
test images being fairly well controlled and aimed at a 
moderate level of search difficulty (Fig 3, bottom).  

 

The above-described selection criteria were specific to 
target-present (TP) images, but an equal number of 
target-absent (TA) images (n=2183) were selected so 
as to create a standard TP versus TA search context. 
These images were selected randomly from COCO, 
with the constraints that: (1) none depicted the target, 
and (2) all depicted at least two instances of the 
target’s siblings. COCO defines the microwave siblings 
to be ovens, toasters, refrigerators, and sinks, under 
the parent category of “appliances”. Clock siblings are 
defined as: books, vases, scissors, hairdryers, 
toothbrushes, and teddy bears, under the parent 
category of “indoor”. Sibling membership was used as 
a selectin criterion so as to discourage target-absent 
responses from being based on scene type (e.g., a 
street scene is unlikely to contain a microwave).  

The large size of the dataset required data collection 
to be distributed over groups of searchers. Each 
microwave training image was searched by 2-3 people 
(n=27); each clock training image was searched by 1-2 
people (n=26). Test images were each searched by a 
new group of 60 people, 30 for a microwave target and 
30 for a clock target in a between-subjects design. 

Behavioral Search Procedure 
A standard categorical search paradigm was used for 
both training and testing (Fig. 4). TP and TA images 
were randomized within target type, and searchers 
made a speeded TP or TA response terminating each 
trial. Search display visual angles were 54°×35° for 
testing; for training angles ranged from 12°×28.3° in 

Figure 2: A dynamic state representation from cumulative 

ReT-images. Note how each fixation (left to right) 
progressively de-blurs an initially blurred image input. 

Figure 3: Top, examples of clock (left 3) and microwave 

(right 3) training images. Bottom, examples of test images, 
each depicting both a microwave and a clock.  
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width and 8°×28.3° in height. Eye position was 
sampled at 1000 Hz using an EyeLink 1000 in tower-
mount configuration (average spatial error < 0.5°).  
 

 

Results 

Search Behavior 
Table 1 provides summary error and number-of-
fixation data, but the key behavioral pattern is plotted 
in Figure 5. Fixations on TP trials were strongly guided 
to both the microwave and clock targets, as evidenced 
by the higher probability of gaze landing on the targets 
relative to object-based chance baselines. Given the 
importance of the first 6 fixations in the behavioral 
data, the model outputted fixed 6-fixation segments.  

 

 

 
 

IRL Model 
To determine whether the model’s behavior is 
reasonable, we visualize in Figure 6 the reward maps 
(middle) and action maps (right) preceding and 
following the initial shift of its gaze (left, top to bottom) 
in a microwave search task. Greener colors on the 

reward maps indicate image locations associated with 
greater immediate reward, and bluer colors on the 
action map indicate greater total reward expected if 
fixation shifted to a given location. The clear alignment 
between the generated behavior and the distributions 
of both immediate and total reward suggests that the 
model has learned to associate a State (e.g., the 
features of a microwave in this image) with an Action. 
 

 

 

Figure 7 is also a qualitative evaluation, this time 
comparing fixation-density maps (FDMs) from people 
searching for a microwave (n=30) or a clock (n=30) in 
two test images to FDMs generated (sampling from 
probabilistic policy) by the model as it searched for the 
same targets in the same images. Not only did the 
model find the targets, but depending on the target 
category it also prioritized actions to different scene 
regions, similar to what was observed in behavior. 
 

 

 

We conducted several analyses comparing the 
model’s search behavior to the behavior of people 
searching the test dataset. These analyses are 
summarized in Table 2 for search efficiency and in 
Table 3 for the model’s success in predicting 
behavioral FDMs. A notable finding from Table 2 is 
that both model and behavioral search efficiency was 
high, with the better performing of the two depending 
on the target type. For microwave search, the model 
found the target more efficiently than the behavioral 
searchers by three different metrics (excluding errors). 
These include: Percentage of trials in which the target 
was located in the first six fixations, the average 

Figure 4: Categorical search paradigm. 

Figure 5: Cumulative probability of fixating the target in the 
target-present test dataset, relative to baselines. 

Table 1: Errors and mean number of fixations before the 
button press, grouped by dataset, target type, and TP/TA. 

Figure 6: IRL model searching for a microwave target (red 

box) in a test image. Right, action maps. Middle, reward 
maps. Left, cumulative ReT-images based on the first 
fixation (top row) and second fixation (bottom row). 

Figure 7: Fixation-density maps from the model and people 
searching for a microwave (left 4 panels) and clock (right 4). 
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number of fixations in these fixated-in-6 trials, and 
scanpath ratio, which is a measure of search efficiency 
defined as the distance between the starting fixation 
location and the target divided by the summed 
saccade distance. However, why this advantage 
occurs is uncertain, with possible causes ranging from 
error in the ReT-images to people failing to behave as 
optimally as an IRL model. Perhaps more informative 
is that for clock search the model outperformed people 
on only one measure of efficiency, on the other two 
measures the behavioral performance was equal to or 
more efficient than the model. This suggests that small 
differences in metric values may not be meaningful.  

Table 3 reports how well the model’s FDMs 
predicted the FDMs of the behavioral searchers. 
Prediction success was quantified using three 
measures: Pearson’s Correlation Coefficient (CC), 
Normalized Scanpath Saliency (NSS; Bylinskii et al., 
2016), and Area Under the ROC Curve (AUC). Higher 
values for all measures indicate better prediction. We 
also report predictions from a Subject Model, 
computed by having n-1 searchers predict the 
behavior of the searcher that was left out, which 
establishes a practical upper limit on a model’s ability 
to predict a behavior. Of these metrics, AUC yielded 
the best agreement between IRL and Subject models, 
while CC yielded the poorest IRL model predictions. 

 

Conclusions 

We showed that a model driven by reward can predict 
the goal-directed control of attention. This 
demonstration required first assembling a dataset of 
search behavior large enough to train an Inverse 
Reinforcement Learning model. Creation of this 
dataset is itself a contribution, enabling other models 
of goal-directed search behavior to be trained and 
used for more extensive model comparison. Having 
learned reward functions for two target category goals, 
these functions were used to predict the fixations 
made by new searchers searching for those same 
target categories in a new testing dataset, where we 
found good prediction of both search efficiency and the 
spatial distribution of search fixations. Ongoing work is 
extending the Microwave-Clock Search dataset to 
include 18 target categories, thus enabling the 

relationship between attention and reward to be 
studied across a category structure.  

Visual search is a goal-directed behavior of unique 
importance, shared by pigeons and people and most 
species in between. Perhaps because of its 
fundamental role in survival, we believe that search 
relies on the most basic of control mechanisms—
reward. Using methods from machine learning it is 
now possible to learn reward functions that define the 
target goals used in the cognitive control of attention. 
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