Paper: | PS-1B.69 | ||
Session: | Poster Session 1B | ||
Location: | H Fläche 1.OG | ||
Session Time: | Saturday, September 14, 16:30 - 19:30 | ||
Presentation Time: | Saturday, September 14, 16:30 - 19:30 | ||
Presentation: | Poster | ||
Publication: | 2019 Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany | ||
Paper Title: | Spatial Attention introduces Behavioral Trade-off in a Large-Scale Spiking Neural Network | ||
Manuscript: | Click here to view manuscript | ||
License: | This work is licensed under a Creative Commons Attribution 3.0 Unported License. |
||
DOI: | https://doi.org/10.32470/CCN.2019.1098-0 | ||
Authors: | Lynn K. A. Sörensen, University of Amsterdam, Netherlands; Davide Zambrano, Centrum Wiskunde Informatica, Netherlands; Heleen A. Slagter, Vrije Universiteit Amsterdam, Netherlands; H. Steven Scholte, University of Amsterdam, Netherlands; Sander M. Bohté, Centrum Wiskunde Informatica, Netherlands | ||
Abstract: | Visuo-spatial attention is a key mechanism for selecting goal-relevant information in natural scenes. We here implement a variant of the normalization model of attention into a spiking convolutional neural network, which approximates attentional gain with a change in firing rates. We apply this type of attention with different spatial extents to various levels in the processing hierarchy of a network performing object recognition in natural scenes. We find that close to the average object-size attentional kernels yield the best performance, equivalent to a rather focused attentional enhancement. Furthermore, manipulating spatial attention within a single level was ineffective as benefits of spatial attention only arose from the combination of early-to-mid level modulations in the network hierarchy. Our results demonstrate that one can efficiently boost performance on the challenging task of recognizing objects in cluttered environments in a large-scale vision model by understanding attentional gain as a more or less precise representation of sensory information. |